ユーザーズガイド 第1版

光学薄膜設計ソフトウエア TFV Version 3.4

https://thinfilmview.com/

© 2005 EastWind Tsusho Inc.

[目次]

1.	概	要		5
<i>2</i> .	1.	ンストー	ール方法	7
З.	T	FVの	使い方	8
5	3.1.	TFV	7の起動	8
9	2	メイ	シウインドウの説明	g
ر د	າ. <u>⊿</u> . 	=⊥ ⁄œ		10
Ũ	ງ.ປ. ຊຸ	訂昇 २.1	- 内谷の説明 - 一つの思両での蒲暄の計質	10
	3.5	3.1. 3.2.	複数の界面での多重反射を含む薄膜の計算(スタック)	11
ç	гл	같다		19
Ŭ	9.4. 34	武司 4 1	リーターの保1F -	12
	3.4	1.1. 4 2	膜厚の表示形式を選択する	13
	3.4	4.3.	膜物質を変更する	$15 \\ 15$
	3.4	4.4.	屈折率(n)の微調整	16
	3.4	4.5.	吸収係数(k)の微調整	17
	3.4	4.6.	不均質(屈折率勾配)を設定する	18
	3.4	4.7.	設計の中心波長を変更する	20
	3.4	4.8.	膜厚(d)を変えずに中心波長を変更する	21
	3.4	4.9.	光線の入射角を変更する	22
	3.4	4.10.	基板や入射媒質を変更する	23
	3.4	4.11.	グラフに表示するプロットの種類(反射・透過・吸収・光学濃度・位相・偏光・裏面)を変更する)
	9	1 19	24 屋の泊加・削除・コピー	95
	ુ. ગ	4.12. 4.13	眉の迫加・削除・コレー 田	20 96
	ວ. _" ຊຸ	4.10. 4.14	治労信と改たする	$\frac{20}{97}$
	3.4	4 15	シートを切り替えて別の設計データーを表示する	28
	3.4	4.16.	シートの選択	29
	3.4	4.17.	設計データーを他のシートにコピーする	30
	3.4	4.18.	設計データーにコメントを付ける	30
	3.4	4.19.	層を反転させる	31
	3.4	4.20.	計算範囲・計算間隔を設定する(スペクトル 波長 グラフ・入射角グラフの x 軸範囲変更)	32
	3.4	4.21.	スペクトル計算 波長 範囲を複数設定する	34
	3.4	4.22.	セルのコピー・ペースト	35
	3.4	4.23.	入力可能な小数点桁数	35
3	8.5.	グラ	フの操作	36
	3.8	5.1.	グラフの Y 軸や系列の色を変更する(グラフの書式設定)	36
	3.	5.2.	グラフへのユーザー定義ラインの追加	38
	3.8	5.3.	分光光度計測定データーをグラフへ表示する	40
	3.5	5.4.	グラフのズーム・スクロール	43
	3.8	5.5.	スペクトルグラフ・人射角グラフの操作	44
3	8.6.	各種	討算機能の使い方	48
	3.6	6.1.	スペクトルグラフ	48
	3.6	6.2.		49
	3.6	6.3.	スペクトル・人射角複合 3D グラフ	50
	3.6	ö.4.	分散アータークラフ	51
	3.6	5.5. C.C	九子式烝宿七二ダー	53
	ර.(ඉර	0.6. 3.7	电场独 员刀 仰	96 57
	ა. ეკ	0.1.	ビツ奴順心(ビゴ昇/) 制体記主	07 60
	ə.t	0.0.	农坦际左	00

	3.6.9.	裏面側の分光特性	65
	3.6.10.	群遅延	
	3.6.11.	複数基板の多重反射計算(スタック)	
	3.6.12.	基板・媒質の内部透過率	75
	3.6.13.	計算結果を数値で表示する	
3	7 最	商化機能(1) 檀進モード	77
0	371	ローカルサーチ	82
	372	ゲローバルサーチ	82
	373	ニードルサーチ	82
	3.7.4.	最適化での各層の設定	
	3.7.5.	~~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~	
3	8 最	商化機能(2) フリーハンドモード	86
0	381	国内協能() シリーン () こ 「	86
	382	複数の系列が表示されている場合の動作	87
	3.8.3.	マウスによる重み付け	
ი			00
ឋ	9.9. 改正 2.0.1	新ナーターの初況1F成"認込"休仔 . 訳社ニーター ちむ担に佐诺する	
	3.9.1.	設計ナーダーを新税に作成9 る	
	3.9.2.	ファイルから設計ナーダーを読み込む	
	3.9.3.	ファイルへ設計ナーターを休任9つ	
	3.9.4. 2.0 F	設計ナーダーをノアイルに休任されている状態に戻り	
	3.9.5.	旧ハーションとの設計ナーダーノディルの互換性	
3	.10.	プロジェクトの保存・読込	91
	3.10.1.	プロジェクトの保存	
	3.10.2.	プロジェクトの読込	
	3.10.3.	プロジェクトを閉じる	
	3.10.4.	最近使ったプロジェクト	
3	.11.	基板や 騲の n. k を計算	
-	3.11.1.	- (m + k,	
	3.11.2.	吸収がある基板の屈折率(n)、吸収係数(k)、内部透過率(Ti)を計算	
	3.11.3.	単層膜の nk 解析	
	3.11.4.	単層金属薄膜の nk 計算	
	10		100
3	5.12. ·	ての他の機能	
	3.12.1.	⑦	
	3.12.2.	プ 敗 式 の 性 規	
	3.12.3.		112
	3.12.4. 2.19 E	他のソフトとの連携(数値や図のコレー・ハースト)	114
	3.12.0.	Essential Macleou ナーダーのインホート	110
	3.12.6.		117
	3.14.7.	ZEMAA へのエクヘルート	117
	3.12.0. 2.19.0	ガイン・フィント・フのパファーダー衣小	
	3.12.9. 3.19.10	展序で初期値に戻す 110me ホランを衣小	
	0.12.10		
3	.13.	環境のカスタマイズ	
	3.13.1.	オフション設定	
4.	初期導	入済みの基板データー・膜物質データー	
4	.1. 基	板データー	
4	.2. 障	物質データー	
-	1/7-1	*	107
_			137

5.1. メー	インウインドウ	
5.1.1.	メインメニュー	
5.1.2.	ツールバー	
5.1.3.	計算範囲·計算間隔設定	
5.1.4.	設計データー	
5.1.5.	設計データー領域での右クリックメニュー	
5.2. グ・	ラフウインドウ	
5.2.1.	グラフ上での右クリックメニュー	
6. エラーン	メッセージと対処方法	

1. 概要

特徴

直感的でわかりやすい操作性。 リアルタイム計算システムによる、きびきびとした動作。 スライドバーやアップダウンボタンによるマウス操作で、膜厚や屈折率が素早く変更可能。 タブ型シートにより、最大 20 までの設計データーを同時に設計可能。 多くのスペクトルの種類と単位に対応。

機能

• 反射率、透過率、吸収率、光学濃度、位相、群遅延のグラフ表示および数値表示

スペクトルの種類	単位
波長	Å, nm, μ m, mm
周波数	PHz, THz, GHz
波数	cm ⁻¹ , μm ⁻¹ , 2π/cm
角周波数	rad/fs
エネルギー	eV, keV
g 値	

反射率、透過率、吸収率の単位 0-1,%,dB

入射角、位相の単位 deg.

群遅延の種類
GD: 群遅延 Group Delay
GDD: 群遅延分散 Group Delay Dispersion
CDC: 色分散係数 Chromatic Dispersion Coefficient
TOD: 3 次分散 Third Order Dispersion
FOD: 4 次分散 Fourth Order Dispersion
5OD: 5 次分散 Fifth Order Dispersion

群遅延の単位 fs, ps

- 基板および膜物質の分散データー(n および k)のグラフ表示および数値表示
- ツーリングファクターや真空中の屈折率を考慮した光学式蒸着モニターシミュレーション
- 電場強度分布のグラフ表示および数値表示
- 色計算·色差計算

XYZxy, CIE L*a*b*, L*C*h, Hunter Lab, L*u*v*, UCS, Whiteness Index, Yellowness Index, sRGB, CIE2000, Dominant Wavelength

- 製造誤差解析:各層の膜厚・屈折率・吸収係数の増減に対する、光学特性の変化解析およびモンテカ ルロシミュレーション
- 設計の最適化
 ローカルサーチ、グローバルサーチ、ニードルサーチ
- 分光反射率、分光透過率測定値から、基板・単層薄膜・単層金属薄膜のnとkを計算
- •スペクトルグラフへの分光光度計測定データーファイル読込表示機能

日立分光光度計 (UDSS, UDS, UDA, UV1 ファイル)、Olympus-USPM ファイル、島津製作所 SPC ファイル、日本分光 JWS ファイル、Ocean Optics OOi-Base32 ファイル、csv ファイル読込に対応。相対測定値を絶対値に変換可能。

- グラフへのユーザー定義ライン表示機能
- 周期層サポート
- •日本語、英語および繁体中文表示切り替え可能

仕様

最大層数:5000層(シート内の表の行数が 5000 行まで)

動作に必要な環境

•OS

Windows® 10 または 11。 Home または Pro エディション。 32bit または 64bit。

※ Windows10のSモードでは動作いたしません。

※ Windows XP では動作いたしません。

※ Windows Vista, 7, 8 はサポート対象外です(まもなく動作しなくなる予定です)。

CPU

Intel または AMD プロセッサ。 Intel Core i5 以上または AMD Ryzen5 以上の CPU を推奨します。

・メモリー

32bitOS の場合、最大 2GB の RAM を使用します。 64bitOS の場合、最大 4GB の RAM を使用します。 16GB 以上のメモリーを搭載した PC を推奨します。

·画面解像度

1024 x 768 以上の画面解像度。 Full HD(1920x1080)以上を推奨します。 複数の画面を表示して操作するため、解像度が高くサイズが大きい画面を推奨します。

・ストレージ容量

100MB 以上のディスク空き容量。

・USB ポート

ハードキー接続用に USB2.0 または 3.0 の TYPE A ポートが 1 つ必要です。 PC に Type-C ポートしかない場合は、変換アダプターや USB ハブをご利用ください。

2. <u>インストール方法</u>

CD-ROM または Website のユーザー専用ページ(https://thinfilmview.com/jp/userpage)からダウン ロードしたインストールプログラムを実行してください。 指示に従ってインストールしてください。

インストールには、Windows の管理者権限が必要です。 権限がない場合は、PC の管理者にインストールをご依頼ください。

3. TFV の使い方

TFV の操作方法と機能を説明します。

3.1. TFV の起動

TFV を起動するには、デスクトップ上の TFV アイコンをダブルクリックします。

(デスクトップに TFV アイコンを作成していない場合、Windows のスタートメニューから、[すべて) (のアプリ] > [ThinFilmView] > [TFV]を選択します。

TFV のメインウインドウとスペクトルグラフウインドウが表示されます。

メインウインドウには3層 AR コートの設計例が表示され、スペクトルグラフウインドウには計算値がプロット されています。

😻 TFV				- 🗆 X	() スペクトルグラフ – ロ X		
ファイル(ファイル(E) 編集(E) 表示(Y) シート選択(S) ツール(I) ヘルプ(H)				IIII グラフ書式設定(E) Ч ユーザーライン▼ 🤔 分光光度計▼ 📄 コピー(C)▼ See その他▼ □		
🖻 🖻 🖡	🗄 🖵 🔀 3D) \succ Դո 🗽 ⊳ 🖵 📭 📲	• O _{pt} N _k 🎂		5.0		
波長		🔹 nm 🕒	✓	R,T,A単位 >	4.5 — Sheet1 Ra		
3	80- 7	80 step 1 nm	詳細 適用	% ~	40		
0 -	60 step	1 deg, Ref=	500nm שלשו	•	35		
Sheet1	Sheet2 Sh	eet3 Sheet4 Sheet5 Sh	neet6 Sheet7 She	et8 Sheet9 She *	\$30 \$\$30		
Center	50	0 🗄 nm, Angle	0 🗧 deg		₹ 25		
Substr	ate N-BK7(S	SCHOTT)		~	F 20		
	Thickr	iess	n and k profile		15		
No.	nd/λ	nm Material	dn dk	不均質			
1	0.2500	75.56 AI2O3	0.0000 0.0	000	1.0		
2	0.5000	121.97 ZrO2	0.0000 0.0	000	0.5		
3	0.2500	90.27 MgF2	0.0000 0.0	000	0.0		
					波長 (nm)		
					注意: 有効範囲 [ZrO2] 400-800 nm		
					フペクトルグラフウィンドウ		
				_			
Mediu	m 1			*			
☑ Ra 🗌 Rs 🗌 Rp 🔲 Ta 🗌 Ts 🔲 Tp 🛛 裏面							
🗆 Aa 🗌 As 🗌 Ap 🗌 ODa 🗌 ODs 🗌 ODp 🔄							
🗆 Frs	🗆 Frp 🛛	dFr 🗌 Fts 🗌 Ftp 🗌	dFt 選択解	余			
					J		

メインウインドウ

「※ エラーメッセージが出て TFV が起動しない場合は、ハードキーがパソコンに接続されていないか、 か、インストールが正常におこなわれていない可能性があります。 巻末のエラーメッセージと対処方法をご参照ください。

3.2. メインウインドウの説明

メインウインドウに表示されている項目の概略説明です。

Sheet1~Sheet20 にそれぞれ設計データーを登録できます。

3.3.1.一つの界面での薄膜の計算

メインウインドウ各シートの設計データーで計算される内容は下記の通りです。

アメイトの 範疇(0 冬戸6) シート 調代(5) シート (1 人) (1 \Lambda)	10 TFV – 🗆 X	😈 スぺクトルグラフ – 🗆 X
	ファイル(E) 編集(E) 表示(M) シート選択(S) ツール(I) ヘルプ(H)	1111 グラフ書式設定(E) 🏪 ユーザーライン・ 🤔 分光光度計・ 🕒 コピー(C)・ 🦕 その他・
Wedium 1 Medium 1	D ≥ H w ≤ 3D > VA Im > w + 0, nk	5.0 Fheret(2)
380- 780 step 1 mm 1 mm <th>波長 🖌 nm 🖌 🗸 R,T,A単位 ></th> <th>4.5</th>	波長 🖌 nm 🖌 🗸 R,T,A単位 >	4.5
0 60 step 1 1 3.5 Sheet1 Sheet3 Shee3 Shee3 Shee3	380 - 780 step 1 nm 詳細 適用 % 🗸	4.0
Sheet1 Sheet3 Shee	0 - 60 step 1 deg, Ref= 500 nm リセット 🧉	3.5
Center 500 mm, Angle 0 edg 2 2 Substrate N-BK7(SCHOTT) n and k profile 2 2 No. nd/A nm Material d dk 1 0.2500 75.56 Al2O3 0.0000 0.0000 3 0.2500 90.27 MgF2 0.0000 0.0000 3 0.2500 90.27 MgF2 0.0000 0.0000 Aa As Ap ODa OD ODp Frs Frp dfr Ets Ftp dfr	Sheet1 Sheet2 Sheet3 Sheet4 Sheet5 Sheet6 Sheet7 Sheet8 Sheet9 She*	@ 30
Substrate N-BK7(SCHOTT) Thickness n and k profile nd/A nm Material dn dk 不均質 2 0.5000 75.5.6/AI2O3 0.0000 0.0000 3 0.2500 90.27/MgF2 0.0000 0.0000 3 0.2500 90.27/MgF2 0.0000 0.0000 Hedium 1 Ra Rs Rp Ta Ts Tp 裏面 Aa As Ap ODa ODS ODp Frs Frp dfr Fts Ftp dft 選択解論	Center 500 nm, Angle 0 deg	4 25
Thickness n and k profile No. nd/A nm Material dn dk 不均質 1 0.2500 75.56.40203 0.0000 0.0000 0.0000 0.0000 3 0.2500 90.27.MgF2 0.00000 0.0	Substrate N-BK7(SCHOTT)	Frank
No. nd/A nm Material dn 成本 不均質 1 0.2500 75.55 A/2C3 0.0000 0.00	Thickness n and k profile	
1 02500 75.56 Al2O3 0.0000 0.0000 2 0.5000 12197 ZrO2 0.0000 0.0000 3 0.2500 90.27 MgF2 0.0000 0.0000 3 0.2500 90.27 MgF2 0.0000 0.0000 ## 新助範囲 IZ-O21 400-800 nm ※美 (nm) ## Aa As Ap ODB ODP Frs Frp dFr Fts Ftp dFr	No. nd/λ nm Material dn dk 不均質	15
2 0.5000 121.97.ZrO2 0.0000 0.0000 3 0.2500 90.27.MgF2 0.0000 0.0000 380 400 420 440 460 480 500 520 540 560 580 620 640 660 680 700 720 740 760 780 波長 (nm) 建産:有効範囲 [Z:O2] 400-800 nm	1 0.2500 75.56 Al2O3 0.0000 0.0000	1.0
3 0.2500 90.27 MgF2 0.0000 0.0000 380 400 420 440 460 480 500 520 540 550 580 600 620 640 660 680 700 720 740 760 780 波長 (nm) 建築: 有効範囲 [Zr02] 400-800 nm	2 0.5000 121.97 ZrO2 0.0000 0.0000	0.5
Medium 1 Ra Rs Rp Ta Tp 東面 Aa As Ap ODa ODp Frs Frp Ifr 選択解除	3 0.2500 90.27 MgF2 0.0000 0.0000	0.0
注意: 有効範囲 [Z-O2] 400-800 nm 体edium 1 ■ Ra Rs Rp Ta Ts Tp 裏面 ○ Aa As Ap ○ DBa ○ DD; ○ DD ○ Frs Frp dfr Fts Ftp □ dft 選択解除		波長 (nm)
Medium 1		注意: 有効範囲 [ZrO2] 400-800 nm
Medium 1		
Medium 1 ■ Ra Rp Ta Ts Tp 裏面 □ Aa As Ap ODa OD5 ODp □ Frs Frp dfr Fts Ftp dft 選択解除		
Medium 1		
Medium 1 · _ · · · · · · · · · · · · ·		
Medium 1		
■eduani 「 ■ Ra Rs Rp Ta Ts Tp 表面 Aa As Ap ODa ODS ODp □ Frs Frp □ dfr Fts Ftp □ dFt 選択解除	Madium 1	
IAa AA AA OA OD ODp Frs Frp dfr Fts Ftp dfr 運動		
□ Aa □ As □ Ap □ UUa □ UU □ UU □ UU □ UU □ UU □ UU □		
	□ Frs □ Frp □ dFr □ Fts □ Ftp □ dFt 選択胖陈	

上図メインウインドウの Sheet1 に表示されている設計データーの意味は次のようになります。

Substrate(基板)	SCHOTT BK-7	厚さ: 無限
基板上の薄膜 第1層	AI2O3	膜厚 nd=0.25 λ , d=75.56 nm
基板上の薄膜 第2層	ZrO2	膜厚 nd=0.5 λ , d=121.97 nm
基板上の薄膜 第3層	MgF2	膜厚 nd=0.25 λ , d=90.27 nm
Medium(入射媒質)	1(空気)	厚さ: 無限
Center(設計の中心波長)	λ =500 nm	
Angle(光線の入射角)	0 °	

スペクトルグラフ(Sheet1(Ra))には下図の反射率が表示されています。 反射率=反射光÷入射光

3.3.2. 複数の界面での多重反射を含む薄膜の計算(スタック)

スタックの機能を使うと、複数の界面での合計の計算ができます。

上図のスタックウインドウの意味は次のようになります。

入射媒質	1(空気)	厚さ: 無限
膜(表向き)	メインウインドウの Sheet1 の薄膜 基	板側が第1層
基板	SCHOTT BK-7	厚さ: 1 mm
膜(裏向き)	メインウインドウの Sheet1 の薄膜 基	板側が第1層
出射媒質	1(空気)	厚さ: 無限
入射角	0°	

スペクトルグラフの赤線(スタック1(Ra))には下図の反射率が表示されています。 反射率=反射光÷入射光

3.4. 設計データーの操作

3.4.1.膜厚を変更する

Thicknessの列の数値セルをクリックすると、セルの下側にスライドバー・右側にアップダウンボタン が表示されます。スライドバーの中央のつまみをマウスでドラッグすると、数値が変わり、それにともない グラフのプロットもリアルタイムに変化します。

右側のアップダウンボタンでも同様に変化します。

• キーボードを使用した膜厚変更

膜厚はキーボードの矢印キーや UpDown キーを使って変更することもできます。

セルをマウスでクリックして(スライドバーはクリックしないでください)、Ctrl キーを押しながら矢印キー を押してください。膜厚が変化します。Ctrl キーを離して上下の矢印キーを押せば別の層のセルに移 動するので、そこでまた Ctrl を押しながら矢印キーを押すことで、いくつかの層を行ったり来たりしな がら膜厚を変更できます。

矢印キーの代わりに、PageUp・PageDown キーを使うと膜厚の変化量が2倍になり、スピードアップします。

元の膜厚(スライドバーのつまみが中央にある時の膜厚)に戻すときは Home キーを押します。 現在の膜厚を、スライドバーのつまみが中央にある時の膜厚にするには、Enter キーを押します。

3.4.2.膜厚の表示形式を選択する

膜厚の表示形式は次の中からお好みの形式を選択することができます。

膜厚列の表示	: (1) 光学膜厚・物理膜厚両方を表示			
方法	Thickness Thickness			
	No. $\underline{nd/\lambda}$ Å No. <u>QWOT</u> nm			
	1 .2500 755.6 1 1.0000 75.56			
	(2) 光学膜厚のみ表示			
	Thickness Thickness			
	No. nd/ λ No. QWOT			
	1 .2500 1 1.0000			
	(3) 物理膜厚のみ表示			
	Thickness Thickness			
	No. nm No. Å			
	1 75.56 1 755.6			
	(4) 光学膜厚・物理膜厚自動切替表示(以前のバージョンでの表示方法)			
	Thickness			
	No. nd/λ or Å			
	1 .2500			
	自動切替表示では 10 未満の値を入力すると光学膜厚、10 以上の値を			
	入力すると物理膜厚と自動判断されます。			
膜厚の単位	物理膜厚の単位 : Å , nm, μm または mm			
	光学膜厚の単位:FWOT(nd/ λ) または QWOT(λ /4を1とする単位)			
	※ 表示方法で(4)の表示方法を選んだ場合は、物理膜厚の単位: A, 光学膜			
	厚の単位:nd/ λ に固定されます。			
優先	光学膜厚・物理膜厚両方を表示している時に、光学膜厚と物理膜厚のどちらを			
	優先するかの設定。			

膜厚の表示形式を選択するには、ツールバーのオプション⁴をクリックするか、メニューから、[ツール]-[⁴オプション]を選択し、表示されるウインドウの左側のリストから[膜厚]を選択します。

🔞 オプション			
スタートアップ	膜厚設定		
膜厚	膜厚列の表示方法		
¹⁹ 光字定数 スライドバーとアップダウンボタン	1. 光学膜厚・物理膜厚両方を表示		~
<i>■ グ</i> ラフ	膜厚の単位		
³⁰ スペクトル・入射角 複合グラフ	光学膜厚		
◎ 烝有」ノトロール	Full Wave Optical Thickness (nd/ λ)		~
▶ 色計算	物理膜厚と設計の中心波長		
₩ 製造誤差	nm		<u> </u>
%最適化	優先		
言語	光学膜厚		
		ОК	Cancel

計算の優先設定

表示方法の選択で、[1.光学膜厚・物理膜厚両方を表示]を選択した場合は、[優先]欄で光学膜厚・物 理膜厚のどちらを優先するかを選択してください。

[光学膜厚優先の場合の動作]

中心波長や屈折率を変更した場合、光学膜厚の表示値が固定され物理膜厚が変更されます。 計算には表示されている光学膜厚が使用されます。

[物理膜厚優先の場合の動作]

中心波長や屈折率を変更した場合、物理膜厚の表示値が固定され光学膜厚が変更されます。 計算には表示されている物理膜厚が使用されます。

W TFV	- 🗆 X						
ファイル(E) 編集(E) 表示(V) シート選択(S) ツール(I)	ヘルプ(<u>H</u>)						
🖄 🖻 🔛 🔜 3D 🛬 🖓 🗽 🕨 🕂 🗛 ^N K	\$						
波長 <mark>y</mark> nm y	✓ R,T,A単位 >						
380 - 780 step 1 nm	詳細適用 %						
0 - 60 step 1 deg, Ref= 50	00nm リセット <						
Sheet1 Sheet2 Sheet3 Sheet4 Sheet5 Shee	t6 Sheet7 Sheet8 Sheet9 She *						
Center 500 🗧 nm, Angle	0 🚊 deg						
Substrate N-BK7(SCHOTT)	·						
Thickness	n and k profile						
No. <u>nd/λ</u> nm Material	dn dk 不均質	優先に設定されている側の					
1 0.2500 75.56 AI2O3	0.0000 0.0000	遊びでのたこれ。 「「「「「「」」で、 「」」で、 「」」で、 「」」で、 「」」で、 「」」で、 「」、 「」、 「」、 「」、 「」、 「」、 「」、 「」					
2 0.5000 121.97 ZrO2	0.0000 0.0000	スター とほど 旅び 次が					
3 0.2500 90.27 MgF2	0.0000 0.0000						
Medium 1	<pre>v</pre>						
☑ Ra 🗌 Rs 🗌 Rp 🔲 Ta 🔲 Ts 💭 Tp 👘 裏面							
Aa As Ap ODa ODs ODp							
□Frs □Frp □dFr □Fts □Ftp □dFt 選択解除							

優先設定の切り替えに伴う注意事項

優先設定を切り替えた場合、膜厚の表示値以下の小数点誤差により計算結果に若干の誤差が生じ ます。

また、同様の理由により設計データー保存時と読込時とで優先設定が異なっていた場合にも計算結果に若干の誤差が生じます。

Material の列のセルをクリックすると、セルの右側に下向きのボタンがあらわれます。このボタンを押 すと、登録されている膜物質(分散データー)の一覧が表示されるので、所望の膜物質を選択します。 使用したい膜物質が一覧にない場合、屈折率の値を直接入力することもできます。

例:3層目の膜物質をMgF₂からSiO₂に変更する。

第3層の MgF₂のセルをクリックし、下向きのボタンを押すと膜物質の一覧が表示されます。一覧の 中から SiO₂を選択すると、第3層の膜物質が SiO₂に変わり、グラフのプロットも変化します。

dnの列のセルをクリックするとアップダウンボタンが表示されます。上向きのボタンを押すと屈折率が高くなり、下向きのボタンを押すと屈折率が低くなります。

Material で指定した膜物質の屈折率に対してここで設定した値が加算・減算されます。

● 例 :3 層目の MgF₂の屈折率を 0.02 低くする。

3 層目の dn のセルをクリックし、下向きのボタンを 2 回押すと-.0200 と表示され、屈折率が 0.02 低くなります。

1.3848-0.0200=1.3648(波長 500nm に対して) として計算される(他の波長についても同様に-0.02 され る)。

※ ボタンを押したときの屈折率増減量は、「3.13.1 オプション設定」で変更することができます。

dkの列のセルをクリックするとアップダウンボタンが表示されます。上向きのボタンを押すと吸収係数が増加し、下向きのボタンを押すと吸収係数が減少します。

Material で指定した膜物質の吸収係数に対してここで設定した値が加算・減算されます。

• 例:3 層目の MgF2 の吸収係数を 0.01 増加させる。

3 層目の dk のセルをクリックし、上向きのボタンを 2 回押すと.0100 と表示され、吸収係数が 0.01 増加します。

吸収係数を 0.01 増加させるには、上向きのボタンを 2 回押す。

※ ボタンを押したときの吸収係数増減量は、「3.13.1 オプション設定」で変更することができます。

3.4.6.不均質(屈折率勾配)を設定する

不均質列のセルをクリックすると、セルの右側に下向きのボタンがあらわれます。このボタンを押す と、登録されている不均質データーの一覧が表示されるので、所望の不均質データーを選択します。

• 例 : 2 層目の ZrO₂ に負の不均質を適用する。

第2層の不均質列のセルをクリックし、下向きのボタンを押すと不均質データーの一覧が表示されます。一覧の中から Minus-1を選択すると、第2層の屈折率が 100 Å ごとに n が-0.005 ずつ減少する負の不均質が適用され、グラフのプロットも変化します。

noneを選択すると不均質は解除されます。

😈 TFV — 🗆 🗙	
ファイル(E) 編集(E) 表示(Y) シート選択(S) ツール(I) ヘルプ(出)	Ⅲ グラフ書式設定(E)… Ч ユーザーライン▼ ジ 分光光度計▼ □ コピー(C)▼ Ω その他▼
🕑 🖻 🔛 🛂 3D 🗁 ^V ハ 🗽 🕨 🕂 🗛 ^{II} K 🎍	5.0
波長 • nm • R,T,A単位 >	4.5
380- 780 step 1 nm 詳細 適用 % 🔽	4.0
0- 60 step 1 deg, Ref= 500 nm リセット	3.5
Sheet1 Sheet2 Sheet3 Sheet4 Sheet5 Sheet6 Sheet7 Sheet8 Sheet9 She*	<u>ङ</u> 3.0
Center 500 nm, Angle 0 deg	₹ 2.5
Substrate N-BK7(SCHOTT)	μ ⁻ 2.0
Thickness n and k profile	1.5
No. <u>nd/λ</u> nm Material dn dk 不均質	10
1 0.2500 75.56 Al2O3 0.0000 0.0000	
2 0.5000 121.97 ZrO2 0.0000 0.0000 Minus-1	0.5
3 0.2500 90.27 MgF2 0.0000 0.0000	
	波長 (nm)
Medium 1	注意: 有効範囲 [ZrO2] 400-800 nm
🗹 Ra 🗌 Rs 🗌 Rp 🗌 Ta 🗌 Ts 🗌 Tp 🗌 裏面	X
🗆 Aa 🗌 As 🗌 Ap 🗌 ODa 🗌 ODs 🗌 ODp	│ ○
□ Frs □ Frp □ dFr □ Fts □ Ftp □ dFt 選択解除	∠ 宿日に WIIIUS-1 Cし C 設定されに や均貝が適用され
[Ctrl+矢印(↑↓)][Page]: 值変更	る。
	ガラフキ白動的に恋化する

クランも自動的に変化する。 この例では、ZrO2層に負の不均質が適用され、 反射特性の帯域が広がっている。

※ ヒント

不均質のセル上にマウスポインタをしばらく置いておくと、不均質データーがポップアップでグラフ表示 されます。

※ 注意: 不均質層の膜厚を光学膜厚で指定した場合、不均質層では屈折率 n が変化するため、指定した光 学膜厚と実際の光学膜厚は異なります。

上記設定例では、第2層 Thickness 指定値 0.5 に対して実際の値は nd/ λ =0.4932 となります。

	Thick	iness		n and k	d k profile			
No.	<u>nd/ λ</u>	nm	Material	dn	dk	不均質		
1	.2500	75.56	Al2O3	.0000	.0000			
2	.5000	121.97	ZrO2	.0000	.0000	Minus-1		
3	.25(no	i/λ= 0.493	32 (at 500.0nm	n).0000	.0000			
d= 121.97 nm								
	不	均質層						

※ 不均質データーの新規作成・編集については、「3.12.3 不均質データーの作成・編集」を参照してください。

3.4.7.設計の中心波長を変更する

設計の中心波長は、下図の赤枠で囲まれた中心波長設定欄で指定します。 中心波長設定欄(Center)の右側のアップダウンボタンをクリックすると中心波長が変更できます。

😈 TFV					-		×		
ファイル(E) 編集(E) 表示(<u>V</u>) シート選択(<u>S</u>) ツール(<u>I</u>) ヘルプ(<u>H</u>)									
2	🖄 🖻 💾 🔛 🗠 "A 🕪 🕨 🕂 🗠 🖬 🗛 👘								
波長		~ nm	¥		🗸 R	, T ,A単位	>		
3	- 088	780 step	1 nm	詳細	適用	% 🔽			
0 -	60 ste	p 1d	eg, Ref=	500 nm	リセット		<		
Sheet1	Sheet2 S	heet3 She	et4 Sheet5 S	heet6 Sheet	t7 Sheet8	Sheet9	She [®]		
Cente	5	00 🗄 nm, J	Angle	0 🗄 deg	I				
Substr	ate N-BK7	(SCHOTT)			~				
	Thick	ness		n and k p	orofile				
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均質	Ē		
1	0.2500	75.56	Al2O3	0.0000	0.0000				
2	0.5000	121.97	ZrO2	0.0000	0.0000				
3	0.2500	90.27	MgF2	0.0000	0.0000				
Mediu	m 1				~				
🗹 Ra	Rs C	Rp 🗆 Ta	a 🗆 Ts 🗌	Тр 🗌	裏面				
🗆 Aa	As C	Ap 🗆 O	Da 🗌 ODs 🗌	ODp					
🗆 Frs	🗆 Frp 🗌	dFr 🗆 Ft	s 🗆 Ftp 🗌	dFt 递	【訳解除				

- 中心波長設定欄

左の例で、膜厚が 0.25 の場合(1 層や 3 層)、 nd/ λ =0.25 で、設計の中心波長 λ =500nm な ので、

光学膜厚 nd=0.25×500=125nm となる。

※ 膜厚を変えずに中心波長を変更するには、 「3.4.8 膜厚(d)を変えずに中心波長を変 更する」を参照してください。 3.4.8. 膜厚(d)を変えずに中心波長を変更する

膜厚の表示形式で、「光学膜厚・物理膜厚両方を表示」を選択していて優先が光学膜厚の場合・「光 学膜厚のみ表示」を選択している場合・「光学膜厚・物理膜厚自動切替表示」を選択している場合は、前 項の「設計の中心波長を変更する」では、中心波長を変更すると物理膜厚が変わるため、特性が変化し ます。特性を変化させずに(物理膜厚を変化させずに)中心波長を変更することもできます。

メニューから、「編集」-「‱膜厚を変えずに中心波長変更」または、シート名を右クリックして「‱膜厚を変えずに中心波長変更」を選択します。

中心波長を入力し、OKを押すと中心波長が変わり、物理膜厚を変えないように光学膜厚欄の数値が 自動的に調整されます。

• 例 膜厚を変えずに中心波長を 500nm から 600nm に変更する

メニューから、「編集」-「完成」を変えずに中心波長変更」または、シート名を右クリックして「完成」を変えずに中心波長変更」を選択し、600 と入力します。

中心波長(Center)が 500nm から 600nm に変更され、光学膜厚欄の数値が調整されます。反射特性は中心波長変更前後でほぼ同等です。小数点表示桁数の誤差により若干ズレが生じます。

3.4.9.<u>光線の入射角を変更する</u>

光線の入射角は、下図の赤枠で囲まれた入射角設定欄で指定します。 入射角設定欄(Angle)の右側のアップダウンボタンをクリックすると入射角が変更できます。

有効な入力範囲は0~89.9999度です。

3.4.10.基板や入射媒質を変更する

基板や入射媒質は、それぞれ下図の赤枠で囲まれた部分で指定します。

右側の矢印をクリックすると登録されている基板の分散データーの一覧が表示されます。分散データーはアルファベット順に並んでいます。種類が多いですが、頭文字の最初の何文字かを入力することで該当する分散データーをすばやく選択することができます。

例: 基板を石英(Quartz)に変更する。

Substrate 欄の右側の矢印をクリックして分散データーの一覧を表示させます。そのままキーボードで qu と入力すると Quartz が選択されます。

この段階ですでに計算結果にも変更が反映されています。Enter キーを押すか矢印をクリックすれば 一覧を閉じることができます。

TFV	– – ×	U TFV	- • ×	👅 TFV	– – ×	
ファイル(E) 編集(E) 表示(M) シート選択(S) ツール(I) ヘルプ(H) ② 2 日 U 2 3D 〜 \/ lm > U + 0, nk →		ファイルと 編集(E) 表示(M) シート選択(S) ツール(E) ヘルプ(H) 7ァイルと 編集(E) 表示(M) シート選択(S) ツール(E) ヘルプ(H) シート				
波長 vnm v	🗸 R,T,A単位 >	波長 nm 🔹	✓ R,T,A単位 >	波長 vnm v	✓ R,T,A単位 。	
380 - 780 step 1 nm 詳細 ¥	佣 % -	380 - 780 step 1 nm 詳細	適用 % 🖌	380 - 780 step 1 nm	詳細 適用 % -	
0 - 60 step 1 deg, Ref= 500 nm	<u>۲ット</u> <	0 - 60 step 1 deg, Ref= 500 nr	m <u>Jtyk</u> <	0 - 60 step 1 deg, Ref=	500 nm <u>Jtyk</u>	
Sheet1 Sheet2 Sheet3 Sheet4 Sheet5 Sheet6 Sheet7 S	heet8 Sheet9 She*	Sheet1 Sheet2 Sheet3 Sheet4 Sheet5 Sheet6 Sheet6	Sheet7 Sheet8 Sheet9 She*	Sheet1 Sheet2 Sheet3 Sheet4 Sheet5 S	heet6 Sheet7 Sheet8 Sheet9 She *	
Center 500 nm, Angle 0 deg		Center 500 nm, Angle 0	deg	Center 500 nm, Angle	0 🖶 deg	
Substrate N-BK7(SCHOTT)		Substrate qu <mark>artz</mark>		Substrate Quartz	v	
N-BASF64(SCHOTT)		Q-RSKH4S(HIKARI)	~	Thickness	n and k profile	
No.	不均質	No. (Q-PSKH52S(HIKARI)	不均質	No. <u>nd/λ</u> nm Material	dn dk 不均質	
1 N-BK7HT(SCHOTT))	1 Q-SFOR(HIKARI))	1 0.2500 75.56 AI2O3	0.0000 0.0000	
N-BK10(SCHOTT)	2	Q-SK15SHIKARI))	2 0.5000 121.97 ZrO2	0.0000 0.0000	
³ N-F2(SCHOTT)	,	³ Q-SK52S(NIKARI))	3 0.2500 90.27 MgF2	0.0000 0.0000	
N-FK5(SCHOTT)		Q-SK55S(HIKARI)				
Medium N-FK51(SCHOTT)		Medium QF1(CDGM)		Medium 1	·	
Ra N-FK58/SCHOTT)		Ra OF5(CDGM)		🜌 Ra 🗌 Rs 🗌 Rp 🗌 Ta 🗌 Ts 🗌	Tp 🗌 裏面	
Aa N-K5(SCHOTT)	-	Aa QF6(CDGM)		🛛 Aa 🗌 As 🗌 Ap 🗌 ODa 🗌 ODs 🗌	ODp	
Frs N-KF9(SCHOTT)		Frs QF8(CDGM)		Frs Frp dFr Fts Ftp	dFt 選択解除	
屈折率の値をN-KZFS2(SCHOTT)		屈折率の値をQF50(CDGM)		屈折率の値を直接入力することもできます		
- /		\				

矢印をクリックして一覧を表示 → キーボードで qu と入力 → Enter を押して一覧を閉じる。

同様に Medium 欄で入射媒質を変更することができます。 Medium 欄には初期設定で空気を意味する 1 が設定されています。

入射媒質は常に吸収係数(k)=0として計算されます。

Substrate、Medium、Material欄は、屈折率の値を直接入力することもできます。

3.4.11.<u>グラフに表示するプロットの種類(反射・透過・吸収・光学濃度・位相・偏光・裏面)を変更</u> する

メイン画面の一番下、[計算種類選択欄]に並んでいるチェックボックスでプロットの種類を選択します。

					_		Ra	:	反射率
ファイル(E	F) 編集(E)	表示(V) シー	-ト選択(S) ツール	/(T.) ヘルプ(H)			Rs	:	反射率
🕑 🖻 🕻	3 😡 🛂 3	$\Box \simeq \sqrt{N}$. ≽ 🖵 🕂 Օրլ	n _k 💩 🗌			Rp	:	反射率
波長		v nm	~		✓ R	,T,A単位	Ta		法 温率
3	80 -	780 step	1nm	詳細	適用	%	Te	÷	<u>远</u> 远中 玉四玄
0 -	60 ste	p 1de	eg, Ref=	500 nm	リセット		13	•	边迥华
Sheet1	Sheet2 S	heet3 She	et4 Sheet5 Sh	neet6 Sheet	7 Sheet8	Sheet9 She	Тр	:	透過举
Center	50	00 <mark>:::</mark> nm, /	Angle	0岩 deg			Aa	:	吸収率
Substra	ate N-BK7	(SCHOTT)			~		As	:	吸収率
Na	Thick	kness	Material	n and k p	rofile	工作所	Ap		吸収率
NO. 1	<u>na/x</u> 0.2500	nm 75 56		an 0.0000	ak 0.0000	个均頁		÷	との道
2	0.5000	121.97	ZrO2	0.0000	0.0000			•	儿子辰
3	0.2500	90.27	MgF2	0.0000	0.0000		ODS	:	尤 字 涙
							ODp	:	光学濃
Mediur	m 1				~		Frs	:	反射位
🗹 Ra	Rs C	Rp 🗌 Ta	a 🗌 Ts 🗌	Тр 🗌	裏面		Frp	:	反射位
🗆 Aa	As [Ap 🗆 O	Da 🗌 ODs 🗌	ODp			dFr		反射位
🗆 Frs	🗆 Frp 🗌	dFr 🗌 Ft	ts 🗌 Ftp 🗌	dFt 選	択解除		Fte	÷	太 温 位
				<u>\</u>				•	医胆尿
				\backslash			гιр	:	透道包
							d⊦t	:	透過位
				-⊥⁄≊	车 千舌 米 石	·强+口+関	裏面	:	裏面側
				ē ∫ ā	科性规	苎扒悧			

Ra	:	反射率(sp 平均)
Rs	:	反射率 s 偏光(TE)
Rp	:	反射率 p 偏光(TM)
Та	:	透過率(sp 平均)
Ts	:	透過率 s 偏光(TE)
Тр	:	透過率 p 偏光(TM)
Aa	:	吸収率(sp 平均)
As	:	吸収率 s 偏光(TE)
Ар	:	吸収率 p 偏光(TM)
ODa	:	光学濃度(sp 平均)
ODs	:	光学濃度 s 偏光(TE)
ODp	:	光学濃度 p 偏光(TM)
Frs	:	反射位相変化 s 偏光(TE)
Frp	:	反射位相変化 p 偏光(TM)
dFr	:	反射位相差(Frs-Frp または Frp-Frs)
Fts	:	透過位相変化 s 偏光(TE)
Ftp	:	透過位相変化 p 偏光(TM)
dFt	:	透過位相差(Fts-Ftp または Ftp-Fts)
裏面	:	裏面側からの入射光に対する計算
選択解	除:	全てのチェックを解除します。

初期状態では Ra(反射率の s 偏光 p 偏光 平均)が選択されており、グラフには反射率の s 偏光とp 偏光の平均値がプロットされています。

 例: Rs(反射率の s 偏光)と Rp(反射率の p 偏光)をグラフに表示する。
 Rs(反射率の s 偏光)と Rp(反射率の p 偏光)にチェックを付けると、Ra・Rs・Rp の 3 本のプロットが グラフに表示されます。入射角が 0°の場合は 3 本のプロットが重なるので、ここでは入射角(Angle)を 30°に変更しています。

※ グラフの Y 軸(縦軸)はグラフをダブルクリックするか「グラフ書式設計」で変更できます。「3.5 グラ フの操作」をご参照ください。 3.4.12.層の追加・削除・コピー

メインウインドウのセルを右クリックすると、ポップアップメニューが表示され、簡単に層の追加や削除・コピーをおこなうことができます。

【層のコピー】

[1]この層をコピー]を選択すると層の情報がクリップボードへコピーされます。 次にコピー先の層を右クリックして[1]この層へ貼付]を選択するとクリップボードの内容が貼り付きます。

【複数の層を一度にコピー】

メニューから、「編集」-「「自層をクリップボードへコピー」を選択します。開始層と終了層を選択して OK を押します。

次に「編集」-「「這クリップボードから層を貼付」を選択して、貼付層を選択します。

層を選択	×	貼	討付開始層を選択	×
開始層: 終了層: 1 ~ 2 ~		→	貼付層: 2 ~	
OK Cancel			OK Cancel	

この例では第1層,第2層の内容がそれぞれ第2層,第3層へコピーされます。

3.4.13.周期層を設定する

前記ポップアップメニューで、[🚰 ここに周期層を追加]を選択すると、周期層の挿入ダイアログボック スがあらわれます。

×
~
周期
2

挿入位置 : 層の No.(この例では 3 層目の前に周期層を挿入)

層数: 周期層内の層数

周期 : 周期層の周期

OK ボタンを押すと、下図のように周期層が挿入されます。

😈 TFV							×	
ファイル(E) 編集(E) 表示(V) シート選択(S) VYール(I) ヘルプ(H)								
D ≥ H U × 3D >= \n h h > U + N h 4								
波長 🔹 nm 🔹 📝 R,T,A単位 >								
3	- 08	780 step	1 nm	詳細	適用 9	6 🔽		
0 -	60 ste	p 1de	eg, Ref=	500 nm	リセット		<	
Sheet1	Sheet2 S	heet3 She	et4 Sheet5 Sh	eet6 Sheet	7 Sheet8	Sheet9	She	
Center	5	00]] nm, /	Angle	0 🗄 deg				
Substr	ate N-BK7	(SCHOTT)			*			
	Thick	iness		n and k p	rofile			
No.	nd/λ	nm	Material	dn	dk	不均衡	Ę	
1	0.2500	75.56	AI2O3	0.0000	0.0000			
2	0.5000	121.97	ZrO2	0.0000	0.0000		_	
P1			Period:	2	1.00		L L	
3	0.2500	75.56	AI2O3	0.0000	0.0000		ļ	
4	0.2500	60.98	ZrO2	0.0000	0.0000		(
P1			End				J	
5	0.2500	90.27	MgF2	0.0000	0.0000			
Madiu	no 1							
wealu	m 1							
🗹 Ra	Rs	Rp 🗌 Ta	a 🗆 Ts 🔲 '	Tp 🗌	裹面			
🗆 Aa	🗆 As 🗌	Ap 🗆 O	Da 🗌 ODs 🗌	ODp				
🗆 Frs	🗆 Frp 🗌	dFr 🗆 Fi	ts 🗆 Ftp 🗔	dFt 選	択解除			

灰色の行で囲まれた部分(Period から End まで)が周期層です。

Period の右側の数字が周期を表します。このセルを クリックするとアップダウンボタンがあらわれ、簡単に 周期を変更できます。

この例では、次のような層構成になります。 基板/Al₂O₃/ZrO₂/Al₂O₃/ZrO₂/MgF₂/Air

周期層(周期:2)

周期層

周期層を削除するには、灰色の行の部分を右クリックし、 [***この周期層を削除]を選択します。

周期層内の膜厚の倍率を設定することができます。 左の例では倍率 1.10 の 10 周期の周期層と、 倍率 0.90 の同じく 10 周期の周期層が重なっていま す。

倍率は、周期層内の膜厚に対して掛けられます。 例えば倍率 1.10 の場合 Thickness は 0.25 × 1.10=0.275 に、倍率 0.90 の場合は 0.25 × 0.90=0.225 となります。

この機能により、周期層内の膜厚を個々に変更する代わりに、周期層の膜厚を一律に変更することができます。

倍率

End

0.0000

0.0000

0.0000 0.0000

□ 東面

選択解除

Period:

0.90

0.0000

2

• 周期層の倍率を設定する

ファイル(E) 編集(E) 表示(V) シート選択(S) ツール(I) ヘルプ(H)

85.48 SiO2

60.98 7rO2

85 48 SiO2

🗹 Ra 🗌 Rs 🗌 Rp 🗌 Ta 🔲 Ts 🗌 Tp

Aa As Ap ODa ODs ODp

Frs Frp dFr Fts Ftp dFt

P1

3

P2

5

Medium 1

0.2500

0.2500

0.2500

P2

3.4.14.光学膜厚と物理膜厚を切り替える

膜厚の表示形式で、「光学膜厚・物理膜厚自動切替表示」を選択している場合は、層毎または全層一 括で光学膜厚・物理膜厚の切り替えができます。

光学膜厚・物理膜厚の切り替えをおこなうには、メニューから「編集」-「┿物理膜厚に変換(全層)」・ 「┿光学膜厚に変換(全層)」、

または、層を右クリックして出てくるポップアップメニューから、「┵この層を物理膜厚に変換」・「┵この層を光学膜厚に変換」・「[↓] 物理膜厚に変換(全層)」・「[↓] や理膜厚に変換(全層)」・「

		物	理膜	厚			
	🔰 TEV				-	- ⊏	×
7	ァイル(E) 編集	(E) 表示(V) ツー	JV(∐) ∧JI	レプ(<u>日</u>)			
C	s 🗈 🔛 🚺	J 🛂 3D 🦢 👌	n Im 🐓	ພ 🕂	O _{pt} nk	4	
	380 - 7	⁷⁸⁰ nm, step	1 nm i	詳細	P	aram. 🕨	
	0 - 60 de	g, step 1 de	eg, 50	00 nm	🗸 s	heet 🔻	
S	heet1 She	et2 Sheet3 Sheet3	Sheet4	Sheet5	Sheete	Sheet	75 < >
C	Center	500 🔹 nm, Ar	ngle	0 🔹	deg		
1	Substrate N	-BK7(SCHOTT) 、	~			
L L	Thicknes	s	n and k	profile			
	No. nd/\ or \	Material	dn	dk	不均能	ŧ.	
	1 755	6 A 2O3	.0000	.0000			
	2 1219	7 Z O2	.0000	.0000			
	3 902	7 NgF2	.0000	.0000			
→							
-							
	Madium 1			_			
	meaium 1			<u></u>			
	ZRa □Rs	□ Rp □ Ta	Ts	□ Tp			
	∃Aa ⊔As ∃Frs □Frp	dFr D Fts	s 🗆 Ftp	□ 贵匪 □ dFt	1		

※ 小数点誤差があるため、変換時にはグラフの数値が若干ずれます。また、元の表示に戻すときに 膜厚が若干ずれる場合があります。

Medium 1

図 Ra □ Rs □ Rp □ Ta □ Ts □ Tp □ Aa □ As □ Ap □ 裏面 □ Frs □ Frp □ dFr □ Fts □ Ftp □ dFt

3.4.15.シートを切り替えて別の設計データーを表示する

Sheet1 から Sheet20 まで 20 個のシートにそれぞれ設計データーを表示し、スペクトルグラフ・入射角グラフに重ね書きできます。

●例

ここでは、Sheet2に、5層ARコートのサンプルを読み込んでみます。

Samples フォルダーをダブルクリック、さらに AR フォルダーをダブルクリックすると AR コートのサン プルー覧が出てきます。5L-1を選択し、開くボタンを押すと、データーがメインウインドウの Sheet2 に表 示され、グラフウインドウにも計算結果がプロットされます。

※ 両方のプロットの色が同じで区別が付きにくい場合は、グラフ上でダブルクリックし、グラフ書式設 定でプロットの色を変更してください。 隠れているシートを選択するには、[スクロールボタン]をクリックしてシートのタブを表示させてからタブ をクリックするか、メニューから[Sheet 選択]をクリックして表示させたいシートを選択します。

※ データーが入っていないシートは[Empty]と表示されます。

3.4.17.設計データーを他のシートにコピーする

編集中の設計データーを他のシートにコピーしたい場合は、メニューから「編集」-「→ 設計データーを 他のシートにコピー」を選択するか、シートのタブを右クリックし、ポップアップメニューから「→ 設計データ ーを他のシートにコピー」を選択します。

次のような画面が表示されるので、コピー元・コピー先のシートを選択して「OK」を押してください。

膜データーを他のシートにコピー	×
コピー元:	
Sheet1	*
↓ ⊐ピー先:	
Sheet2	~
<u>Q</u> K <u>C</u> ancel	

3.4.18.設計データーにコメントを付ける

設計データーにコメントを付けるには、メニューから「編集」-「 **ノ**コメント編集」を選択するか、シートの タブを右クリックし、ポップアップメニューから「 **ノ**コメント編集」を選択します。

次のような画面が表示されるので、コメントを入力し、「OK」ボタンを押してください。 「日時を追加」を押すと現在の日時がコメントに挿入されます。

אַנאָב 😈	_		×
Sheet1			
Sheet1のコメント			^
			~
<			>
日時を追加	<u>O</u> K	Car	ncel

コメントは、下図のようにシート名にマウスをかざすと表示されます。

😈 TFV											
ファイル(E) 編集(E) 表示(V) シート選択(S) ツール(I) ヘルプ(H)											
🤔 ≥ 😫 💭 🛂 3D ⇐ ∿∧ 🐜 🕨 🕂 O _{Pt} N _k 🗄											
波長		~ nm			🗸 R	,T,A単位					
3	880 -	780 step	1nm	詳細	適用 9	% 🗸					
0-	60 ster	p 1de	eg, Ref=	500 nm	リセット						
Sheet1	Sheet2 S	heet	et4 Sheet5 Sh	neet6 Sheet	7 Sheet8	Sheet9 Sh	e *				
Centêr	Center [Sheet1] nm, Angle 0 deg										
Culerte	sheet101	SCLOTT)			~						
	Thick	iness		n and k p	rofile						
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均質					
1	0.2500	75.56	AI2O3	0.0000	0.0000						
2	0.5000	121.97	ZrO2	0.0000	0.0000						
3	0.2500	90.27	MgF2	0.0000							
Medium 1											
☑ Ra 🗌 Rs 🗌 Rp 🗌 Ta 🗌 Ts 🗌 Tp 🗌 裏面											
🗆 Aa	🗆 As 🗌	Ap 🗆 O	Da 🗌 ODs 🗌	ODp							
🗆 Frs	🗆 Frp 🗌	dFr 🗆 Ft	ts 🗆 Ftp 🗆	dFt 選	択解除						

層の上下を入れ替えるには、メニューから「編集」-「↓」 「層を反転」を選択するか、シートのタブを右クリ ックし、ポップアップメニューから「↓」 「層を反転」を選択します。

下図のように層の上下関係が入れ替わります。

※ 不均質が設定されている場合は、完全な層の反転にはなりません。例えば負の不均質が設定されている層は反転しても負の不均質のままになります。

3.4.20.計算範囲・計算間隔を設定する(スペクトル波長グラフ・入射角グラフの x 軸範囲変更)

メインウインドウ上側のツールバーとシートのタブの間にある薄い緑色のエリアで、計算範囲・計算間 隔等を設定します。上段がスペクトル波長範囲の設定、下段は後述する入射角グラフ(3.6.2 入射角グラ フ P.49 参照)での入射角範囲の設定です。

スペクトル範囲の設定欄では、スペクトルの種類と単位およびスペクトルの計算範囲を設定できま す。対応しているスペクトルの種類と単位は下記の通りです。

スペクトルの種類	単位
波長	Å, nm, μ m, mm
周波数	PHz, THz, GHz
波数	cm ⁻¹ , μm ⁻¹ , 2π/cm
角周波数	rad/fs
エネルギー	eV, keV
g 値	

入射角範囲の設定欄では、入射角特性の計算範囲を設定できます。入射角の単位は deg.です。

(入射角 90 度は 89.9999 度として計算されます。)

TFV											
ファイル(E) 編集(E) 表示(V) シート選択(S) ツール(II) ヘルプ(H)											
波長	200	nm	<u> </u>		✓ R, 適田 。	T,A単位,	>				
3	80-	80 step	nm	ä# #0	Address of the second s	~ <u> </u>					
0-	60 step	o 1 de	eg, Ref=	500 <mark>nm</mark>	UENF						
Sheet1 Sheet2 Sheet3 Sheet4 Sheet5 Sheet6 Sheet7 Sheet8 Sheet9 She*											
Center 500 nm, Angle 0 deg											
Substrate N-BK7(SCHOTT)											
	Thick	ness		n and k p	rofile						
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均質					
1	0.2500	75.56	Al2O3	0.0000	0.0000						
2	0.5000	121.97	ZrO2	0.0000	0.0000						
3	0.2500	90.27	MgF2	0.0000	0.0000						
Medium 1											
■ Ra □ Rp □ Ta □ Ts □ Tp □ 裏面											
🗆 Aa	As 🗆	Ap 🗆 O	Da 🗌 ODs 🛛	ODp							
🗆 Frs	🗆 Frp 🗌	dFr 🗆 Ft	s 🗆 Ftp 🛛	〕dFt 選	択解除						

					ì	適用ボタン
					/	
スペクトルの種類と単位→	波長	✓ nm	~		\checkmark	
スペクトル計算範囲→	- 380	780 step	1 _{nm}	詳細	適用	
角度特性計算範囲→	0-6	0 step 1 de	g, Ref=	500 _{nm}	リセット	
				\ \		

この設定の場合、

角度特性および電場強度 計算対象スペクトル

波長範囲 380nm~780nm、1nm 間隔で計算されます。 角度特性は 0 度~60 度、1 度間隔で波長 500nm に対し て計算されます。

※ 設定変更後に「適用」ボタンを押してください。「適用」ボタンを押すまでは計算結果に反映されません。

リセットボタンを押すと、初期値(TFV 起動時の状態)に戻ります。

例: 波長範囲を 300nm~800nm に変更する。
 開始波長に 300、終了波長に 800 と入力して、適用ボタンを押すと、スペクトルグラフの x 軸が 300nm~800nm に変わります。

		/			_		「 スペクトルノ	1-7							_		×
ファイル(5	、 編集(F) 孝		ト選択(S) リール	(T) A 11-7(H)				、 S字(E) U	7_#_=	() - 🔊 /	业业 由計	- אר 🗟	(C) = 0 Z	Ω(H) −			~
				n _k 🍐			5.0	ελε(<u>Ε</u>) '3	ir 1-9-9-	7 7 5	ルル皮可	9 -16 -	(C) ther C	01E.			
波長 3 ¹ 0-	00 - 80 60 step	nm 00 step 1 dee	<mark>)</mark> 1 nm g, Ref=	詳細 500 nm	✓適用リセット	R,T,A単位 > % _ <	4.5 4.0 3.5									- Sheet1	1(Ra)
Sheet1	Sheet2 She	eet3 Shee	t4 Sheet5 Sh	neet6 Sheet	7 Sheet8	Sheet9 She *	€ 3.0		1								
Center	500) 금 nm, A	ngle	0 🕂 deg			₹ 2.5										
Substra	ate N-BK7(S	CHOTT)			~		⊢` ⊈`2.0									/	
Thickness n and k profile				1.5													
No. 1 2	<u>nd/λ</u> 0.2500 0.5000	nm 75.56 A 121.97 Z	Material Al2O3 ZrO2	dn 0.0000 0.0000	dk 0.0000 0.0000	不均質 D	1.0										
3	0.2500	90.27	MgF2	0.0000	0.000	0	300	350	400	450	500	550 皮長 (nm	600)	650	700	750	800
Mediur	m 1				~		注意:有効範囲	[ZrO2] 40	00-800 nm	[N-BK7(S	CHOTT)] 3	12.5663-2	325.42 nm	1			
☑ Ra □ Aa □ Frs	Rs F As A Frp c	Rp 🗌 Ta Ap 🗌 OE dFr 🗌 Fts	□ Ts □ Da □ ODs □ ; □ Ftp □	Tp DDp dFt 選	裏面 択解除		-										
☑ Ra □ Aa □ Frs	Rs F As A Frp c	Rp 🗌 Ta Ap 🗌 OE dFr 🗌 Fts	Da ODs C	Tp DDp dFt 遵	裏面 択解除												

スペクトル間隔や角度間隔は、小さくすればより細かく計算されますが、計算時間が長くなるため反応 が鈍くなります。間隔を大きくすると計算は速くなりますが、グラフがカクカクになります。

※ 他のエリアは変更が即座にグラフなどに反映されますが、上図赤枠で囲まれたエリアは、 適用ボタンを押さないと計算結果に反映されません。

3.4.21.スペクトル計算波長範囲を複数設定する

スペクトル範囲設定欄の「詳細…」を押すと、分光特性を計算するスペクトル範囲を詳細に設定する画 面が表示されます。範囲を飛び飛びに設定したり、範囲ごとに異なる間隔を設定したりすることができま す。

スペクトル詳細設定画面

コマンド	機能					
開く	ファイルに保存した設定内容を開きます。					
保存	設定内容をファイルに保存します。					
使用	チェックを付けた行の設定が使用されます。 チェックを外した行の設定は無視されます。					
クリア	表の内容をクリアします。					
コピー	表の内容をクリップボードへコピーします。 表計算ソフトなどへコピーできます。					
貼付	クリップボードの内容を表に貼り付けます。 表計算ソフトなどから貼り付けができます。					
挿入	現在行(左端に三角マークが表示されている 行)の上に空白行を挿入します。					
削除	 現在行(左端に三角マークが表示されている 行)を削除します。					

● 「3.13.1.1 スタートアップ設定」の計算範囲欄で、ソフト起動時の初期値を設定できます。

セルを選択して設計データーのコピー・貼付ができます。

コピーしたいセルを下図のようにマウスまたは[Shift+矢印]キーで選択します。

製造誤差解析											
On	۸T	単位		Δn	単位						
~	1.00	%		1.00	%						
✓	1.00	%		1.00	%						
•	1.00	%		1.00	%						

チェックボックスのセルを基点にマウスで選択する
ことはできません。反対側のセルからマウスで選択
するか、[Shift+矢印]キーで選択してください。

メインメニューから[編集]-[コピー(選択されているセル)]を選択、または右クリックメニューから[コピー (選択されているセル)]を選択、または Ctrl+c を入力すると、選択範囲の内容がクリップボードにコピーさ れます。

貼り付けたい左上端のセルを右クリックして、[貼付(選択されているセル基点)]を選択、または Ctrl+v を入力すると、コピーした内容が貼り付きます。

Excel から貼り付けることもできます。

3.4.23.入力可能な小数点桁数

設計データーに入力可能な小数点以下の桁数は、9桁です。 9桁以上入力しても計算に使われるのは小数点以下9桁までです。

3.5. グラフの操作

3.5.1. グラフの Y 軸や系列の色を変更する(グラフの書式設定)

グラフの書式設定では、Y 軸の最大値・最小値・グリッド幅の設定や、系列の色を変更することができます。(X 軸はグリッド幅だけを変更できます。X 軸の最大値・最小値はメインウインドウで設定します。) グラフの書式設定機能を呼び出すには、グラフウインドウのツールバーで「SSS書式設定」を選択する か、グラフウインドウを右クリックしてポップアップメニューから[SSSグラフ書式設定]を選択するか、グラフ ウインドウをダブルクリックします。

🚺 TFV					_		び スペクトルグラフ				_	
ファイル(E	E) 編集(E)	表示(⊻) シ	-ト選択(<u>S</u>) ツ-	ール(I) ヘルプ(H)		グラフ書式設定(E)	User ユーザーライン▼	赺 分光光度計 🛯	〕コピ−(<u>C</u>)▼ ♀ ther その他▼		
	1 🗸 🖍 3) <u>≻ ∿∧ ∭</u> ⊡nm	<mark>ر ای ای ای</mark> م	et ⁿ k 🧶	R	,T,A単位 、	🦉 グラフ書式設定			-	o x	Sheet1(Ra)
3	80 - 7	80 step	1nm	詳細	適用	%	77 TU	24	クトルクラフ書式語	没定		
0 -	60 step	1 d	eg, Ref=	500 nm	リセット	<	杀列 ~ Sheet1		色	¹¹¹ X軸 波長 (nm)	白動	
Sheet1	Sheet2 Sh	eet3 She	et4 Sheet5	Sheet6 Sheet	t7 Sheet8	Sheet9 She *	Ra			グリッド幅		
Center	50	0 🗄 nm,	Angle	0 🗄 deg	1		Rs			2 2 7 T TH		
Substra	ate N-BK7(SCHOTT)			~		-Rp -Ta		色の作成	Y軸 R, T, A (%)	自動	
	Thick	ness		n and k p	orofile		Ts		スタイル	最大値	5	
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均質	Тр		· · · · · ·	最小値	0	
1	0.2500	75.56	AI2O3	0.0000	0.0000		Aa		線幅	グリッド幅		
2	0.5000	121.97	ZrO2	0.0000	0.0000		As		v			
3	0.2500	90.27	MgF2	0.0000	0.0000		Ap					740 760 780
							ODa					740700700
Mediu	m 1				~		ODs			☑ 凡例を表示		
🗹 Ra	Rs 🗆	Rp 🗆 T	a 🗆 Ts 🛛] Тр 🗌			-ODp					
										■初期	値として保存	
🗆 Frs	🗆 Frp 🛛	dFr 🗆 F	ts 🗆 Ftp 🛛	☐dFt 🖁	國祝解除		設定を入射角ク	ブラフヘコピー		OK	<u>C</u> ancel	J

【軸の設定】

X 軸のグリッド幅、Y 軸の最大値・最小値・グリッド幅、第 2Y 軸の最大値・最小値を設定できます。[自動]をチェックすると、グラフの範囲内にプロットがすべて表示されるように自動的に調整されます。また、 凡例を表示するかどうかを設定できます。

※ グリッド幅は、小さい値を設定した場合やグラフを小さくした場合には、設定値にかかわらず自動 的に調整されることがあります。

※ x 軸(スペクトル範囲および入射角範囲)の最大・最小値はここでは設定できません。メインウインド ウの計算範囲の設定で x 軸の最大・最小値を設定します。詳細は、前述の、「3.4.20 計算範囲・計 算間隔を設定する(スペクトル波長グラフ・入射角グラフの x 軸範囲変更)」を参照してください。

【系列色の設定】

系列ごとに色を設定することができます。系列を選び、色・スタイル・線幅を選択して OK ボタンを押す と色が変更されます。お好みの色がない場合は、色の作成ボタンを押して色を作成してください。

スペクトルグラフの書式設定には、「設定を入射角グラフヘコピー」ボタン、入射角グラフの書 式設定には、「設定をスペクトルグラフヘコピー」ボタンがあります。「設定を入射角グラフヘコピ ー」を押すと、スペクトルグラフの系列色の設定が入射角グラフ設定にコピーされ、「設定をスペ クトルグラフヘコピー」を押すと、反対に、入射角グラフの系列色の設定がスペクトルグラフ設定 にコピーされます。スペクトルグラフと入射角グラフの系列色を同じにしたい場合に利用すると便 利です。

【設定の保存】

[初期値として保存]ボタンを押すと、現在の軸と色の設定が保存され、次回 TFV 起動時に、保存した 設定でグラフが表示できます。

[初期値として保存]ボタンを押さずに OK ボタンを押すと、設定は TFV 終了時まで有効で、次回 TFV 起動時には元の設定に戻ります。
例: Y 軸の最大値を自動にする。

Y 軸(R,T,A)最大値の自動の欄にチェックを付け、OK ボタンを押すと、プロットがグラフからはみ出さないように、Y 軸の最大値が自動的に変化するようになります。

🍑 グラフ書式設定				
	スペクトルグラフ書ェ	代設定		
系列		軸		
 Sheet1 Rs Rp Ta Ts Tp 	色 色の作成 スタイル	X軸 波長 (nm) グリッド幅 Y軸 R, T, A (%) 最大値 最小値	自動 0 2 2 5 0 0	――― ここにチェックを付けて
Aa As Ap ODa ODs	線幅 [、	グリッド幅 曲を反転	0. 2	
ODp -ODp 	<u>لا</u>	● 八例を表示 ■初期 OK	値として保存 Cancel	——— OK を押す。

例:系列の色を変更する。

Sheet1のRaのプロットの色を黄緑色に変更してみます。

一覧から、Sheet1-Raを選択し、色のリストから黄緑色を選択して OK をクリックすると、Ra のプロットが黄緑色に変わります。

🍯 TFV					_		🧕 スペクトルグラフ			_	
ファイル(E	E) 編集(E) 著	長示(⊻) シ	-ト選択(<u>S)</u> ツー	ル(I) ヘルプ(H)			^V ser ユー	ザーライン・ 🖄 分光光度計・] コピー(<u>C</u>)▼ ♀ ♀ その他▼		
🤌 🖻 🕻	🗄 😡 🛂 3D	$h^{\vee} \cong h$	ւ Þ Ѡ 🕂 ၦ	t ⁿ k 🎍			「ガガラフまず設定				
波長		nm	~		V R	t,T,A単位	● フフフ音式設定		= 0		Sheet1(Ra)
3	80 - 7	80 step	1nm	詳細	適用	%	7 TU	スペクトルクラノ書式	設定		
0 -	60 step	1d	eg, Ref=	500 nm	リセット	<	糸列 ~ Sheet1	色	¹¹¹ X軸 波長 (nm)	1	
Sheet1	Sheet2 Sh	eet3 She	et4 Sheet5 S	Sheet6 Sheet	7 Sheet8	Sheet9 She*	Ra			自動	
Center	50	0 nm.	Angle	0 dea					クリット幅	0 🗾 🔽	
Substra	ate N-BK7(S	SCHOTT)	ligic	- deg	~		-Rp	色の作成	Y軸 R, T, A (%)	수라	
	Thickr	less		n and k p	orofile		-Ta	スタイル	是士值	目動	
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均質	- IS To	v	取八值 日小仿		r
1	0.2500	75.56	AI2O3	0.0000	0.0000		ip Aa	線幅	取小旭		
2	0.5000	121.97	ZrO2	0.0000	0.0000		Aa	V	グリッド幅	0 🚔 🔽	
3	0.2500	90.27	MaE2	0,0000	0,0000		As		□軸を反転		
	0.2500	50.27	Mgi 2	0.0000	0.0000		Ар				740 760 7
							ODa ODa				
Mediur	m 1				~		ODs		☑ 凡例を表示		
🗹 Ra	☑ Ra □ Rs □ Rp □ Ta □ Ts □ Tp □ 裏面				CODp Enc						
🗆 Aa	As	Ap □C	Da 🗌 ODs 🗌	ODp					■初期	値として保存	
🗆 Frs	🗆 Frp 🔲	dFr 🗆 F	ts 🗌 Ftp 🗌]dFt 遵	訳解除		設定を入射角グラフへ	.วピ-	QK	<u>C</u> ancel	

3.5.2.グラフへのユーザー定義ラインの追加

グラフに、ユーザー定義の任意のラインを追加できます。

グラフに設計のターゲットや規格線等を追加する場合などに使用します。また、表計算ソフトなどから 数値をコピーしてグラフに表示することもできます。

ユーザー定義ラインをグラフに追加するには、グラフウインドウのツールバーで「ユーザーライン」-「 ユーザーライン追加」を選択するか、グラフウインドウを右クリックしてポップアップメニューから「 「ユー ザーライン追加」を選択します。

• 系列の選択

入力する前に追加する系列を選択します。ユーザーラインはグラフに 10 本まで表示することができます。

• 系列名

系列名はグラフの凡例として使用されます。空白のままでもかまいません。

• プロットデーターの入力

Xの列にはX軸の値を昇順で入力します。スペクトルグラフなら波長、入射角グラフなら角度です。 Yの列にはY軸の値を入力します。反射率・透過率などの値です。

データー点間は直線で結ばれますが、空白行を1行開けることで、となりあうデーター点間の線を描 画しないようにできます。

データーは、表計算ソフトなどからクリップボードにコピーして貼り付けることもできます。あらかじめ X 軸を昇順に並べ替えてから貼り付けてください。貼り付けるには貼付ボタン ¹ 貼付 を押します。(貼り 付けるデーターはタブ区切りである必要があります。)

行を追加したり削除したりするには、下部にある、行挿入・行削除ボタンを使用します。

データーを1から入力し直すにはクリアボタンを押してください。

● 種別

反射率・透過率・吸収率・位相変化の種別を選択してください。

• 系列色

系列の色、スタイル、線幅を選択してください。

• グラフへ表示

「グラフへ表示」ボタンを押すとユーザーラインがグラフに表示されます。別のユーザーラインを表示させたい場合は引き続き系列を選択してデーター入力をおこない、「グラフへ表示」ボタンを押してください。

グラフから削除
 削除したい系列を選択して「グラフから削除」ボタンを押すとグラフから削除されます。

ユーザーラインデーターのファイルへの保存・ファイルからの読込
 作成したユーザーラインデーターはファイルへ保存して、別の機会に読み込んだりできます。
 保存するには、データー作成後、「保存」ボタンを押し、ファイル名を付けて保存します。
 保存したデーターを読み込むには、系列を選択してから「開く」ボタンを押し、読み込みたいファイルを
 選択します。

●例

次のように入力し、「グラフへ表示」ボタンを押すと、右のグラフにあるように赤いラインが追加されます。

この例では 430nm と 450nm の間、600nm と 660nm の間に空白行を入れているため、グラフのプロットは連続した線ではなく、空白行に該当する部分には線が描画されていません。

※ 上記の例は、可視用 AR コートの規格線サンプルとして、あらかじめファイルに保存されています。開くボタンを押して、Sample(VIS).usl というファイルを開くと、上記と同じデーターが読み込まれます。

3.5.3.分光光度計測定データーをグラフへ表示する

分光光度計測定データーファイルを直接読み込んでスペクトルグラフに表示することができます。 対応しているファイル形式は、日立分光光度計 UV1 ファイルおよび UV-Solutions ファイル(*.UDSS, *.UDS, *.UDA)、Olympus-USPM ファイル、島津製作所分光光度計 SPC ファイル、日本分光 JWS フ ァイル、、Ocean Optics OOi-Base32 ファイル、csv ファイル、タブ区切りテキストファイルです。

分光光度計測定データーファイルを直接読み込んでスペクトルグラフに表示するには、グラフウインド ウのツールバーで「分光光度計」-「一分光光度計測定ファイルからグラフへ追加」を選択するか、グラフ ウインドウを右クリックしてポップアップメニューから「一分光光度計測定ファイルからグラフへ追加」を選 択します。

ファイルを開くダイアログが表示されるので読み込みたいファイルを選択します。Ctrl キーまたは Shift キーを押しながら選択することにより、複数のファイルを同時に読み込むことも可能です。

下図のように読み込んだ内容が表示されます。

• 系列選択

複数の系列を読み込んだ場合、スペクトルグラフに表示させたい系列をこの欄で選択します。

• 相対値を絶対値に変換

測定値が相対値の場合、ここにチェックを入れることで絶対値に変換することができます。測定時にリ ファレンスとして使用した基板をリストから選択してください。

● 種別

反射率・透過率・吸収率・位相変化の種別を選択してください。

● グラフに追加

「グラフに追加」ボタンを押すと、プレビューで表示されている内容がスペクトルグラフに表示されます。

すでにスペクトルグラフに追加したデーターがある場合はそのデーターを消さずに追加で表示されます。

• 削除して追加

「削除して追加」ボタンを押すと、すでにスペクトルグラフに追加したデーターがある場合はそのデータ ーを消してからプレビューで表示されている内容がスペクトルグラフに表示されます。

このように、分光光度計で測定したデーターと設計値を同一グラフ上で比較することができます。

• グラフ上の分光光度計データーの削除

スペクトルグラフに表示されている分光光度計データーを削除するには、グラフウインドウのツールバ ーで「分光光度計」-「
ダグラフから分光光度計データーを削除」を選択するか、グラフウインドウを右クリ ックしてポップアップメニューから「
ダグラフから分光光度計データーを削除」を選択します。

削除したい系列にチェックを入れると削除されます。

😈 分光光度計ラインを削除			×
系列選択			
全選択(<u>A</u>) 選択角	쬒除 <mark>(U)</mark>		
		_	
<u>O</u> K	<u>C</u> ancel		

• csv ファイル、タブ区切りテキストファイルの形式

読込可能な形式は下記の通りです。

波長[区切り文字]測定値 波長[区切り文字]測定値 波長[区切り文字]測定値

·

複数の測定にも対応しています。

波長[区切り文字]測定値[区切り文字]測定値[区切り文字]測定値 波長[区切り文字]測定値[区切り文字]測定値[区切り文字]測定値 波長[区切り文字]測定値[区切り文字]測定値[区切り文字]測定値

区切り文字はカンマまたはタブに対応しています。 波長の単位: nm 測定値の単位: % 波長数: ソフト上は制限を設けていません。 データー数: ソフト上は制限を設けていません。

ヘッダー行で系列名を指定できます。 何らかの文字[区切り文字]系列名 何らかの文字[区切り文字]系列名 1[区切り文字]系列名 2[区切り文字]系列名 3

ファイル上部に複数の文字列行があっても波長と測定値の行まで読み飛ばします。 波長と測定値の行の1行上をヘッダー行とします。

波長昇順、波長降順どちらにも対応しています。 文字コードは自動判別します。

3.5.4.グラフのズーム・スクロール

グラフをズームするには、マウスの左ボタンを押しながら右下方向へドラッグして、グラフの拡大したい 部分を囲みます。マウスの左ボタンを放すとグラフが拡大されます。

↓マウスで囲った部分が拡大される。

グラフのズーム・スクロール機能は有効・無効を切り替えることができます。「3.13.1 オプション設定」 を参照してください。

TFV ユーザーズガイド

3.5.5.1.グラフの分割表示

スペクトルグラフと入射角グラフでは、反射率・透過率・吸収率・光学濃度・位相それぞれを1つのグ ラフに重ね書きするか、別々のグラフに分割して表示するか選択することができます。

また、分割表示ではグラフを横に並べるか縦に並べるかタイル状に並べるか選択することができます。

グラフウインドウのツールバー右端の選択ボックスから表示方法を選択します。

1つのグラフに重ね書き
 軸の種類が3つ以上の場合は選択できません。

上下に並べて表示

左右に並べて表示

😈 スペクトル	グラフ					-		×
💷 グラフ書式語	殳定(E) <mark>リ</mark> er ユーザーライン	🕶 赺 分光光!	変計 🔹 🗋 コピー	(<u>C</u>)▼	の他▼ 00	-		
5.0		100.0			35 1	つのグラフ	に重ね書き	
4.5	- Sheet1 Ra	99.5	— Sr	eet1 Ta		と下に並べ と右に並べ	て表示	1 Frs
4.0		99.0			30	7イル状に	並べて表示	
3.5		98.5			_ 25H	7イル1 7イル2		
€ 3.0		8 98.0	$\left(\right)$		(deg			
掛 2.5	/	樹 97.5			~ 200.0 관			
齕 2.0	/	^照 照 97.0		-	150.0		\mathbf{i}	
1.5	/	96.5			纪 100.0			
1.0	/	96.0			10010			
0.5		95.5			50.0			
0.0		95.0			0.0			
400	500 600 700 波長 (nm)	4	00 500 600 波長 (n) 700 m)	4	100 50 波	0 600 ī 《長 (nm)	700
注意: 有効範囲	[ZrO2] 400-800 nm							

• タイル状に並べて表示

• タイル1

• タイル2

😈 スペクトルグラフ				-	-		×
11 グラフ書式設定(D) リーユーザーライン・ 5.0 (金、4.0 3.0 研 2.20 (1.0 0.0 400 450 500 550 600 6 波長 (nm)	→ 分光光度計・ 	透過率(%) で	ビー(C)・ Ser その他・ 100.0 99.0 98.0 97.0 96.0 95.0 400 450 50	 □ 100! □ 上下に □ 左右に □ タイル □ タイル □ タイル □ 550 6 波長(グラフに こ並べて こ並べて 北に並・ 1 2 500 65 nm)	重ね書き 表示 べて表示 60 700	1 Ta
99 300.0 ション200.0 ビン200.0	9500 520 540 56	50 58	30 600 620 640 66 (nm)	60 680 70	00720	5heet1 7407	Frs 60 780
注意: 有効範囲 [ZrO2] 400-800 nm			· ·				

• 初期設定

TFV 起動時にどの方法で表示するかを設定できます。

メインウインドウ上部のツールバーからオプション。 ョン]を選択するとオプション画面が表示されます。

[スタートアップ設定]の[スペクトルグラフと入射角グラフの R,T,A,OD,Phase 別整列方法]で設定しま

	-
7	
9	0
•	•

() オプション	×
 スタートアップ 説厚 ジデ定数 スライドバーとアップダウンボタン グラフ スペクトル・入射角 複合グラフ 蒸着コントロール 電場強度 金計算 製造誤差 最適化 その他 言語 	スペクトル範囲 マレースペクトル範囲 種類 波長 単位 nm 運類 波長 単位 nm 380 780 第二 780 第4 1 (nm) 詳細スペクトル範囲設定をファイルから読込 ジョー 60 ショー 1 0 - 0 - 0 - 60 , step 1 0 - 60 ショウ 1 (deg) 入射角特性および電場強度の計算対象スペクトル 500 Solo (nm) 設計データーファイル Sheet1.flm 参照 R.TA単位 % スペクトルグラフと入射角グラフのR,TA,OD,Phase別整列方法 〇 〇
	OK Cancel

3.5.5.2.グラフの入替

グラフを分割表示している場合に、反射率・透過率・光学濃度・吸収率・位相変化それぞれをどの位置 に表示するかを指定することができます。

表示位置を入れ替えたいグラフ上で右クリックして、ポップアップメニューから[場所の入替]を選択しま す。表示される項目の中から入れ替えたい相手を選択します。

例:反射率と透過率のグラフを入れ替える場合
 反射率のグラフ上で右クリックして、[場所の入替]-[透過率と入替]を選択します。
 次のようにグラフが入れ替わります。

位置の記憶

入れ替えた位置を記憶するには、任意のグラフ上で右クリックして、[場所の入替]-[現在の場所を記 憶]を選択します。反射率・透過率・吸収率・光学濃度・位相変化それぞれの表示位置が記憶され、次回 起動時に記憶された位置に表示されます。

3.6. 各種計算機能の使い方

3.6.1.<u>スペクトルグラフ</u>

スペクトルグラフを表示するには、メインウインドウのスペクトルグラフツールバー見を押します。

上図の赤枠の部分で、スペクトルの種類と単位、計算範囲を設定できます。 対応しているスペクトルの種類と単位は次の通りです。

スペクトルの種類	単位
波長	Å, nm, μ m, mm
周波数	PHz, THz, GHz
波数	cm ⁻¹ , μm ⁻¹ , 2π/cm
角周波数	rad/fs
エネルギー	eV, keV
g值	

赤枠の部分を変更後、「適用」ボタンを押すと計算が実行され、グラフ等に反映されます。

上図の青枠「R,T,A 単位」の部分で、反射率・透過率・吸収率の単位を設定できます。 単位は、0-1、%、dB から選択できます。

ヒント:

膜厚の単位は、メニューから、[ツール]-[<mark>ゆ</mark>オプション]-[膜厚]-[膜厚の単位]で設定します。 中心波長の単位は、物理膜厚の単位に連動します。

3.6.2.入射角グラフ

入射角グラフを表示するには、メインウインドウの入射角グラフツールバー<mark></mark>を押します。 スペクトルグラフの下に入射角グラフが表示されます。_____

上図の赤枠の部分で、計算範囲と計算対象スペクトル(参照波長)を設定できます。 赤枠の部分を変更後、「適用」ボタンを押すと計算が実行され、グラフ等に反映されます。

上図の青枠「R,T,A 単位」の部分で、反射率・透過率・吸収率の単位を設定できます。 単位は、0-1、%、dB から選択できます。

3.6.3.スペクトル・入射角複合 3D グラフ

スペクトル・入射角の 3D グラフを表示するには、ツールバーのスペクトル・入射角複合グラフ^{3D}をクリ ックします。

表示されているシートの設計データーのスペクトルー大射角特性が 3D グラフで表示されます。

• 波長・入射角複合グラフで設定する各項目の説明

プロットの種類	:反射率・透過率・吸収・光学濃度・位相・群遅延・偏光種別を選択します。
計算間隔	: 計算するスペクトル間隔(nm)、入射角間隔(degree)を設定します。 「適用」ボタンを押すと設定が適用され、グラフに反映されます。
グラフ操作	: 下記のボタンを押し、グラフ上でマウスを左クリックしながら動かすとグラフ の状態を変化させることができます。
	💽 : 回転, 💠 : 移動, 🔎 : ズーム, ២ : 奥行幅変更
	リセットボタンを押すとグラフが元の状態に戻ります。

● グラフの	書式設定			
🦉 グラフ書式設定		—		×
	3D グラフ設定			
軸				
Y軸 反射率 (%)自i	助			
最大値 100 🗧 🔽				
最小値 0 📒 🗹				
グリッド幅 0 🕂 🔽				
□ 軸を反転		🗹 凡例を	表示	
X, Z軸 X: スペクトル, Z: 入	、射角	🔽 🗹 フレーム	を表示	
等高線				
☑ 等高線をグラフに表示	カスタム			
○自動		設定値		
等高線数 10	,			1
0 +7 <i>4</i> /				2
				4
ステップ 1				5
Y軸設定から作成◎				6
				7
				8
				9
	(<u>ב)</u> ליור 👘 ליור (ב)	貼付(2) 字 挿入(1) 🔿 i	削除(D)	
		■初期(直として	呆存
		QK	Canc	el

書式設定を押すとグラフの書式設定を行えます。 ・軸

Y軸の最大値・最小値・グリッド幅を設定します。

X,Z 軸設定でスペクトル・入射角の軸を入れ替 えることができます。

「フレーム表示」にチェックを入れるとグラフに格 子状のフレームが表示されます。

·等高線

「自動」を選択すると等高線を自動で表示しま す。等高線の数を設定してください。

「カスタム」を選択すると等高線を自由に設定で きます。表に、表示させたい等高線の値を入力して ください。[Y 軸設定から作成], [位相設定から作 成]を押すと、それぞれのY 軸設定の最大最小と ステップの値から表に値が入力されます。

等高線を表示したくない場合は「等高線を表示」 のチェックを外してください。 分散データーをグラフ表示するには、ツールバーの分散グラフ ≥をクリックします。 表示されているシートの設計データーで使われている基板および物質の屈折率(n)・吸収係数(k)がグ

ラフにプロットされます。Y軸が屈折率、第2Y軸が吸収係数です。吸収係数は、計算スペクトル範囲内で0の場合は表示されません。

設計データーで dn や dk が使われている場合、dn, dk を含んだ n, k がプロットされます。 dn や dk を含めたくない場合は、ツールバーの「dn と dk を無視」を押してください。

Y 軸の範囲や系列色を変更するには、グラフ書式設定で変更してください。 X 軸(スペクトル範囲)を変更する場合は、メインウインドウの計算スペクトル範囲を変更してください。 メインウインドウのシートを切り替えれば、切り替えたシートの分散データーがプロットされます。

ヒント: 個々の分散データーは、基板や膜物 質欄にマウスをかざすと表示されます。

編集...

0.000 🛩

光学式蒸着モニターの光量変化をグラフ表示するには、ツールバーの蒸着コントロール¹²⁰をクリック します。メインウインドウの下にグラフが表示され、また、メインウインドウが右側に広がって蒸着コントロ ールデーター編集エリアがあらわれます。

グラフの左側から第1層・第2層・第3層の順になっています。緑色の縦線が層の境界を表します。 グラフの右側には Start, Peak, Stop の数値情報が表示されます。

設定により、表面反射測光・裏面反射測光・透過測光の切り替えが可能です。

通常、モニター上の膜厚と製品基板上の膜厚は異なります。また、設計上の屈折率(大気中)と成膜中 (真空中)の屈折率も異なります。TFV ではこれらの点を考慮したシミュレーションが可能です。

• 蒸着コントロールデーター編集エリアの各項目の説明

Monitor	:モニターガラスの種類
Tooling	: モニターガラスと製品基板の膜厚比(Tooling =基板上の膜厚/モニター上の膜厚)
dn	: 屈折率補正値(成膜中の屈折率補正) Material で設定した膜物質の屈折率に対してここで設定した値が加算される
dk	:吸収係数補正(成膜中の吸収係数補正) Material で設定した膜物質の吸収係数に対してここで設定した値が加算される
Filter	: 光学測光に使用する干渉フィルターの波長(nm)
Start	: 光学測光の開始光量 0を指定すると前層の最終光量が開始光量となる
MG	: モニターガラス使用位置 同じモニターガラスに重ねて成膜する場合は同じ番号を指定します

設定機能の説明

蒸着コントロールウインドウのツールバーから「設定」を選ぶと次のような設定画面が表示されます。

• 光学測光方式

• 入射角

上図の日に相当する角度を入力してください。

• モニタリングステップ

光量を計算する単位です。数値が小さいほど細かく計算します。細かすぎると計算に時間がかかりま すので通常は 0.01 か 0.001 を選択してください。

モニターガラスの厚さ

モニターガラスの厚さを入力してください。ガラスに吸収がない場合は入力する必要はありません。

• グラフ表示時にメインウインドウのコントロールデーターも表示

蒸着コントロールグラフ表示時に、メインウインドウの右側を自動的に広げて、蒸着コントロー ルデーター編集エリアを表示するかどうか指定します。チェックを付けるとグラフ表示時に自動的 に表示するようになり、またグラフを閉じるとメインウインドウの蒸着コントロールデーターも自動 的に表示されないようになります。

• Stop%計算時に同じモニターガラスの前の層のピークも使用

例えば第1層と第2層で同じモニターガラスを使用する場合で、第2層がピーク1つまたはピーク無しの場合、第1層の最終ピークを使って第2層のStop%を計算する場合にチェックを付けます。 チェックを付けないと第2層単独でStop%を計算します。 ご利用の成膜システムに合わせて選択してください。

例: チェックを付けた場合

<u>第 1 層のピーク 65.92 と第 2 層のピーク 13.31 から、第 2 層の Stop%を 37.68%と計算します。</u>

. 0	蒸着コントロール [Sheet1]											×
	書式設定(E) 🧏 ユーザーライン▼ 📄 コピー(C)▼ 👷 その他▼ 🦺 🎚	受定	E(<u>O</u>)									
	100 90 80		表面 Stop	反射測 % に同	l光 <mark>, 0 (d</mark> eg じ <mark>MG</mark> の前層	.) 動ピー!	を使用					
	70		No.	Start	PeakNum	Peak1	Peak2	Stop	(Stop)	Stop%	Filter	MG
фH	60		1	25.00	1.5743		65.92	42.42	23.50	57.43	450	1
Ж	40		2	42.42	1.3768		13.31	33.13	19.82	37.68	450	1
	30 20 10										•	
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 (nd/λ)											

例: チェックを付けない場合

第 2 層のスタート 42.42 と第 2 層のピーク 13.31 から、第 2 層の Stop%を 68.08%と計算します。

Stop(%) = 100 * (Peak-Stop)/(Peak-Start)

Stop(%) = 100 * (LastPeak-Stop)/(2ndLastPeak-LastPeak)

電場強度分布|E²|を表示するには、ツールバーの電場強度グラフ<mark>しの</mark>をクリックします。 表示されているシートの設計データーの電場強度分布がグラフにプロットされます。 入射光の強度を1として規格<u>化されて</u>います。

対象スペクトルはこの欄で設定します。

電場強度グラフ

グラフ右側のリストで、表示させる偏光の種類を選択できます。

平均(s,p)	:	s 偏光, p 偏光の平均
S	:	s 偏光(y 成分)
p(x+z)	:	p 偏光の合計(x 成分+z 成分)
рх	:	p 偏光の x 成分(膜面に対して平行な成分)
pz	:	p 偏光の z 成分(膜面に対して垂直な成分)
裏面	:	裏面側から入射した場合の電場強度

※「裏面」を選択することにより、表面側からの入射光と裏面側からの入射光の電場強度を同時に 表示することができます。

メインウインドウのシートを切り替えれば、切り替えたシートの電場強度がプロットされます。

3.6.7.<u>色の数値化(色計算)</u>

反射光や透過光の色を数値であらわすには、ツールバーの色計算をクリックします。

xy 色度図または a*b*色度図の表示や、さまざまな表色系の数値を表示します。

メインウインドウ下部の Ra, Rs, Rp, Ta, Ts, Tp のいずれかを選択すると、該当する数値を計算し、グラフと数値を表示します。

すべてのシートの計算結果を表示するので、別のシートの設計データーとの色差を計算することもで きます。

※ 境界をマウスでドラッグすることにより、 見やすく調整できます。

• 色計算で設定する各項目の説明

視野	: 2 度視野(CIE1931)か 10 度視野(CIE1964)かを選択します。
光源	: 光源の種類を選択します。
色差計算の基準	: 色差を計算する際の基準となるデーターを選択します。 2 つ以上の計算結果がある場合に有効です。
グラフ	: XYZ 表色系の xy 色度図または L*a*b*表色系の a*b*色度図のどちらをグ ラフ表示するかを指定します。
数値データー	: 表示する数値データーの種類を選択します。 XYZxy, CIE L*a*b*, L*C*h, Hunter Lab, L*u*v*, UCS, Whiteness Index, Yellowness Index, sRGB, CIE2000, Dominant Wavelength が表示可能 です。

• 対応している色計算の種類と記号の説明

表色系	色度	色差
XYZ(Yxy) (CIE1931,CIE1964)	: 三刺激值 X,Y,Z、色度 x,y	
完全拡散面の XYZxy	: 三刺激值 X _n ,Y _n ,Z _n 、色度 x _n ,y _n	
L*a*b*(CIE1976)	: 明度 L*、色度 a*b*	dE*ab
L*C*h*	: 明度 L*、彩度 C*、色相角 h(deg)	色相差 dH*、 dL*,dC*,色差 dE94
Hunter Lab	: L,a,b	dEh
L*u*v*(CIE1976)	: L*,u*,v*	dE*uv
UCS(CIE1976)	: u',v'	
Whiteness Index	WI E313(C 光源,2 度視野,反射のみ) · WI CIE(D65 光源,反射のみ)	
Yellowness Index	YI E313(C 光源,2 度視野,反射のみ) YI D1925(C 光源,2 度視野のみ)	
sRGB	: R,G,B	
CIE2000	: -	dE2000
Dominant Wavelength	λ d: Dominant Wavelength(主波長) λ c: Complementary Wavelength(補色主波長) pe: Excitation Purity(刺激純度) pc: Colorimetric Purity(輝度純度))

•計算波長範囲と間隔の設定

メインウインドウのメニューから、[ツール] - [オプション] - [色計算]で、「360-830nm, 1nm 間隔」、 「380-780nm, 1nm 間隔」、「380-780nm, 5nm 間隔(既定値)」の3種類から選択できます。 等色関数、光源、反射率・透過率などのデーターが、選択したスペクトル範囲全域を含んでいない場

合や、スペクトル間隔が異なっている場合は、データーを直線補間して計算します。

		^
スタートアップ 膜厚 3 光学定数 スライドバーとアップダウンボタン 3 グラフ 3 波長・入射角複合グラフ 3 蒸着コントロール 4 電場強度 4 色計算 - 製造誤差 4 最適化 その他 言語	色計 スタートアップ設定 視野 10度視野(CIE1964) 光源 D65 グラフ ×xy色度図 。a*b* 色度図	+算設定 数値データー ▼ XYZxy(完全拡散面) ■ XYZxy(完全拡散面) ■ CIE L*a*b* □ L*C*h □ Hunter Lab □ CIE L*a*v* □ CIE UCS □ Whiteness Index □ Yellowness Index □ SRGB □ CIE 2000 □ Dominant Wavelength
	計算設定 計算波長範囲と間隔 380-780nm, 5nm間隔 360-830nm, 1nm間隔 380-780nm, 1nm間隔 380-780nm, 5nm問隔	• OK Carrel

• ユーザー作成等色関数の登録

等色関数データーファイルは、TFV インストールフォルダー(通常は C:¥TFV)の Color¥CMF フォルダーに入っています。

xyz2.csv が CIE1931 の等色関数、xyz10.csv が CIE1964 の等色関数です。

これらのファイルを参考にユーザー独自の等色関数データーファイルを作成し、Color¥CMF フォルダーに保存してください。TFV を再起動すると視野のコンボボックスで選択できるようになります。

光源の種類

A, B, C, D50, D55, D65, D75, E, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, ID50, ID65 の各光源があらかじめ登録されています。

ユーザー作成の光源データーを登録できます。

• ユーザー作成光源の登録

光源データーファイルは、TFV インストールフォルダー(通常は C:¥TFV)の Color¥LS フォルダーに入っています。

A.csv, D65.csv など、あらかじめ登録されている光源データーファイルを参考にユーザー独自の光源 データーファイルを作成し、Color¥LS フォルダーに保存してください。TFV を再起動すると光源のコンボ ボックスで選択できるようになります。

● 分光光度計データー、ユーザーラインデーターの色計算

スペクトルグラフで表示されている分光光度計データー、ユーザーラインデーターの色計算結果が、色計算 画面に表示されます。

ユーザー作成等色関数、ユーザー作成光源データー、分光光度計データー、ユーザーラインデーターは、前 ページの「計算波長範囲と間隔」で設定されている波長で直線補間をおこない、色計算されます。

3.6.8.製造誤差

製造誤差解析機能を呼び出すには、ツールバーの製造誤差解析しをクリックします。 ある層の膜厚・屈折率・吸収係数の誤差が、光学特性にどの程度影響するかを調べるときや設計値 と実際に成膜した薄膜の光学特性との乖離がどの層に起因しているのかを調べるとき(ミスマッチ解 析)、モンテカルロシミュレーションによる製造ばらつきを調査するとき(製造誤差解析)に使用します。

• メインウインドウの製造誤差解析パラメーター

層毎	の設定を	おこないます。					
	項目	項目の内容					
	On	膜厚, 屈折率 n, 吸収係数 k を変化させる層にチェックを付けます。					
		チェックが外れている層は、ΔT, Δn, Δk に値が入力されていても膜					
		厚, 屈折率 n, 吸収係数 k は変化しません。					
	ΔT	膜厚の変化量を設定します。					
	単位 膜厚の変化量の単位を設定します。						
		単位は光学膜厚・物理膜厚・相対値(%)・標準偏差(σ)の中から選択で					
		きます。					
	Δn	屈折率 n の変化量を設定します。					
	単位	屈折率 n の変化量の単位を設定します。					
	単位は絶対値・相対値(%)・標準偏差(σ)から選択できます。						
	Δk 吸収係数 k の変化量を設定します。						
	単位 吸収係数 k の変化量の単位を設定します。						
		単位は絶対値・相対値(%)・標準偏差(σ)から選択できます。					

● グラフウインドウの設定項目

グラフの種類	: 波長グラフ・入射角グラフ・色計算の中から解析したい種類を選択します。
プロットの種類	:反射率・透過率・吸収率・光学濃度・位相・群遅延・偏光種別を選択します。
変化させる種別	: 膜厚・屈折率・吸収係数のどれを変化させるかを選択します。 複数選択可能です。
分割数	: ミスマッチの分割数を指定します。

例えば、

変化量±10%で分割数5と指定すると、-10%,-8%,-6%,-4%,-2%,0%,+2%,+4%,+6%,+8%,+10%の計算値を出力します。

変化量±10%で分割数1と指定すると、-10%,0%,+10%の計算値を出力します。

層ごとに変化量が異なる場合は、

第1層の変化量±10%、第2層の変化量±20%、分割数1の場合、 (第1層-10%・第2層-20%)、(第1層0%・第2層0%)、(第1層+10%・第2層 +20%)の計算値を出力します。

解析 :試行回数:モンテカルロシミュレーションの試行回数を設定します。 「実行」ボタンを押すとシミュレーションを開始し、結果がグラフに表示されます。 「クリア」ボタンを押すと、シミュレーション結果を消去します。

> 実行ボタンを押すたびに異なる乱数を生成します。 [グラフの種類]や[プロットの種類]を切り替えた場合は、同じ乱数を使って自動的に 再計算します。

> ΔT, Δn, Δk の単位で標準偏差(σ)を選択した場合は、正規(ガウス)分布で値をば らつかせます。 σ 以外を選択した場合は、一様分布で値をばらつかせます。

変化量欄には、各層の膜厚(Thickness), 屈折率(n), 吸収係数(k)それぞれの変化量が表示されます。

Y 軸の範囲や系列色を変更するには、グラフをダブルクリック(または右クリック)してグラフ書式設定 で変更してください。

X軸を変更する場合は、メインウインドウの計算範囲を変更してください。

- スタックの製造誤差
 スタックウインドウを表示するとスタックの製造誤差を計算します。スタックウインドウを閉じると片面の(メインウインドウの)製造誤差を計算します。
- 解析結果の数値表示

グラフ上で右クリックするかツールバーの[こその他]を選択すると表示されるメニューから、[¹² 数値デ ーター表示]を選択するとグラフのデーターを数値表示します。また、[¹² 各計算の、膜厚・n・k の設計値 からのズレ量を表示]を選択すると、Trial ごとの各層の膜厚・n・k の設計値からのズレ量を数値表示しま す。

	🔰 製造誤差	解析						- 0	×	
	<u>ר</u> בר (<u>כ</u>)	🔓 最大最小平均	のみコピー							
Г	波長 <mark>(nm)</mark>	Trial19	Tria	120	Trialの最大	Trialの最小	Trialの平均	Trialの標	準偏差	r
	380	2.905273117	2.9410	24380	3.127985109	2.028211844	2.588924658	0.2890	09468	
	381	2.750885032	2.7899	946917	2.976526475	1.911759174	2.450432923	0.2793	352505	
	382	2.602404629	2.6447	73678	2.830500587	1.800726048	2.317533795	0.2697	767372	
	383	2.459735867	2.5053	97353	2.689823901	1.694966794	2.190114421	0.2602	269777	
	384	2.322776069	2.3717	04231	2.554406810	1.594332598	2.068056918	0.2508	374659	
Γ	385	2.191416579	2.2435	574902	2.424154225	1.498672123	1.951238992	0.2415	96183	
Γ	386	2.065543390	2.1208	84922	2.298966149	1.407832111	1.839534538	0.2324	47735	
	387	1.945037770	2.0035	505463	2.178738230	1.321657948	1.732814215	0.2234	41928	
	388	1.829776847	1.8913	803939	2.063362289	1.239994194	1.630945995	0.2145	590604	
	389	1.719634188	1.7841	44600	1.952726838	1.162685085	1.533795686	0.2059	04844	
	390	1.614480344	1.6818	89111	1.846717569	1.089575001	1.441227433	0.1973	394978	
	最大	2.905273117	2.9410	24380	3.127985109	2.162838085	2.591319933	0.2890	09468	
	最小	0.033210974	0.0689	79386	0.138118501	0.011932181	0.058096632	0.0286	56747	
	平均	0.570698587	0.5415	13974	0.705779942	0.444955421	0.572160608	0.0713	93624	v
-	¢								>	

グラフデーターの数値表示

波長毎の各 Trial の 最大・最小・平均・標準偏差 も表示します。

N -2										
♥ 製造誤差解析									- 🗆	×
🚡 コピー(<u>C</u>)										
Sheet1(Ra)		Layer 1 (Al2O3)			Layer 2 (ZrO2)			Layer 3 (MgF2)		^
	∆Thickness	Δn	Δk	∆Thickness	Δn	Δk	∆Thickness	Δn	Δk	
Sheet1(Ra)	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000)
+	0.002500000	0.016543418	0.00000000	0.005000000	0.020497548	0.00000000	0.002500000	0.013847868	0.00000000)
-	-0.002500000	-0.016543418	0.00000000	-0.005000000	-0.020497548	0.00000000	-0.002500000	-0.013847868	0.00000000)
Trial1	-0.002309429	-0.000808706	0.00000000	0.003676342	0.000015647	0.00000000	-0.001187383	0.008975734	0.00000000)
Trial2	-0.002384107	0.003109748	0.00000000	0.004445446	0.003143162	0.00000000	-0.000885528	0.006349363	0.00000000)
Trial3	0.001854774	0.008998948	0.00000000	0.000891852	0.020268135	0.00000000	-0.000830059	-0.001029077	0.00000000)
Trial4	-0.001635538	-0.010351795	0.00000000	-0.000916811	-0.011267765	0.00000000	-0.002026430	0.001599455	0.00000000)
Trial5	0.000198447	-0.008563716	0.00000000	-0.003920380	0.015289975	0.00000000	0.000133355	0.007188016	0.00000000)
Trial6	-0.000781242	0.015326363	0.00000000	-0.004439235	0.017183018	0.00000000	0.001972532	0.005976587	0.00000000)
Trial7	-0.001731930	-0.004369227	0.00000000	0.003742122	-0.007588093	0.00000000	0.002473685	-0.009090247	0.00000000)
Trial8	0.000998461	0.001033941	0.00000000	-0.002075673	0.006493651	0.00000000	-0.001244039	0.007137460	0.00000000)
Trial9	-0.000574237	-0.009235407	0.00000000	-0.001487430	-0.001038697	0.00000000	-0.000720751	0.007549638	0.00000000)
Trial10	0.000782889	-0.005150258	0.00000000	-0.004028489	-0.003500133	0.000000000	-0.000606815	0.000180411	0.00000000)
Trialの最大	0.001870793	0.015326363	0.00000000	0.004676254	0.020268135	0.000000000	0.002473685	0.011811839	0.00000000	5
Trialの最小	-0.002384107	-0.010351795	0.00000000	-0.004439235	-0.019302612	0.000000000	-0.002026430	-0.013346458	0.00000000	1
Trialの平均	0.000000400	0.001666071	0.00000000	0.000066704	0.002311045	0.00000000	0.000216004	0.002122237	0.00000000)
Trialの標準偏差	0.001325884	0.009104880	0.00000000	0.003620476	0.012939534	0.000000000	0.001353933	0.007744398	0.000000000	•

Trial ごとの各層の膜厚・ n・k の設計値からのズレ 量

• クリップボードへのコピー

ツールバーの[コピー]を押すと表示されている数値データーすべてがクリップボードへコピーされます。

[最大最小平均のみコピー]を押すと、スペクトル・最大・最小・平均・標準偏差のみの数値データーが クリップボードへコピーされます。

また、グラフウインドウ上で右クリックするかツールバーの[1]コピー]横の矢印を押すと表示されるメニューから、[数値データーをクリップボードへコピー]または[最大・最小・平均値のみクリップボードへコピー]を選択することでも同様の操作をおこなうことができます。

[変化量の値をクリップボードへコピー]では、グラフウインドウの変化量欄に表示されている数値をクリ ップボードへコピーできます。 • ミスマッチ解析の例

【例 1】 第 3 層(MgF₂)の光学膜厚(nd/λ=0.25)が±0.025 変化したときの反射特性を表示する。 メインウインドウ製造誤差解析パラメーター欄の[On]列で第 3 層以外のチェックを外し、[ΔT]列に 0.025 と入力し、[単位]列で nd/λを選択し、グラフウインドウの分布の種類で[一様分布]を選択し、変化 させる種別欄で「Thickness」のみ選択する。

【例 2】第3層(MgF2)の膜厚(0.25)が±2.5%変化したときの反射特性を表示する。 例1の設定から[ΔT]を2.5に変更し、[単位]を%に変更する。

製造誤差解析の例

【例 1】全層の膜厚が標準偏差 0.005 σ の正規分布でランダムに分布したときの反射特性のばらつ きを 20 回分シミュレートする。

メインウインドウ製造誤差解析パラメーター欄の全層の[On]列にチェックを入れ、[σT]列に 0.005 と 入力し、グラフウインドウの分布の種類で「正規(ガウス)分布」を選択し、変化させる種別欄で 「Thickness Iのみ選択する。

試行回数を20に設定し、「実行」ボタンを押す。

【例 2】上記の設定で色のばらつきを 20 回分シミュレートする。 「色計算」を選択し、「実行」ボタンを押す。

VI TFV	— 🗆 🗙 🍹 製造誤差解析 Sheet1	- o ×
ファイル(E) 編集(E) 表示(V) シート選択(S) ツール(I) ヘルプ(H)	色計算	- Ra · · · · · · · · · · · · · · · · · ·
② ≥ H W 23D >> ^V ∧ Im > W + 0 _P , ^Π k	支化としる種別	- 0度視野(CIE1964) D65 - 色計算 (380-780nm, 5nm間隔)
波長 nm RTA単位	Thickness	グラフ Sheet1(Ra) Sheet1(Ra)
380- 780 step 1 nm 詳細 適用 % -		● xy色度図 0.5 2 4 +
0- 60 step 1 deg, Ref= 500 nm 92%	1. D DIE	○ a b 巴皮凶 物値データー 0.7
Sheet1 Sheet2 Sheet3 Sheet4 Sheet5 Sheet6 Sheet7 Sheet8 Sheet9 Sh	0 Sheet11 Sheet12 Sheet13 Sheet14 Sheet15 5. ' 가위와	0.6
Center 500 mm, Angle 0 deg	1	XYZxyz(完全拡散面) > 0.5
Substrate N-BK7(SCHOTT)	解析	☑ CIE L*a*b* 0.3
Thickness n and k profile	製造誤差解析 20	■L*C*h 0.2
No. <u>nd/λ</u> nm Material dn dk 不均質	n ΔT 単位 Δn 単位 Δk 単位 字行	Hunter Lab 0.1
1 0.2500 75.56 Al2O3 0.0000 0.0000	0.005 σ 1.00 % 1.00 % 71JP	
2 0.5000 121.97 ZrO2 0.0000 0.0000	0.005 σ 1.00 % 1.00 % 変化量	Whiteness Index x
3 0.2500 90.27 MgF2 0.0000 0.0000	0.005 σ 1.00 % 1.00 % No. Thickness n.k	
	=1 - Sheet1	XYZxyz CIE L*
Medium 1	1 0.005(σ) 0.0	X Y Z x y z L* a*
Ra Rs Rp Ta Ts Tp 原面	2 0.005(σ) 0 0	Sheet1(Ra) 0.114522 0.103566 0.089462 0.3724 0.3367 0.2909 0.9355 0.67
	3 0.005(σ) 0 0	+ 0.098464 0.090139 0.128064 0.3109 0.2846 0.4044 0.8142 0.53
□ Frs □ Frp □ dFr □ Fts □ Ftp □ dFt 選択解除		-0.139/000.126116 0.06/218 0.4195 0.3787 0.2018 1.1392 0.82
Chi Chip Can Cho Chip Cart (Mexida)		

3.6.9.<u>裏面側の分光特性</u>

プロット種類選択欄の「裏面」をチェックすると、裏面側から光線が入射した場合の特性を表示します。 吸収がある膜の表面側・裏面側の特性を同時に見ながら設計することができます。

裏面側特性は、スペクトルグラフ・入射角グラフ・電場強度グラフ・色計算で表示できます。

※ 裏面側からの計算は、表面側からの光線の光路と同一経路で裏面側から光線が入射した場合の 計算をしています。したがって、裏面側からの入射角は表面側からの入射角とは異なります(屈折率 に分散がある場合、裏面からの入射角はスペクトル毎に異なります)。

※ 透過率・透過位相の裏面特性は表面特性と同じであるため表示されません。

3.6.10.群遅延

群遅延、群遅延分散のグラフを表示するには、メインウインドウの GD ツールバーを押します。 スペクトルグラフと入射角グラフを表示できます。

対応している群遅延の種類と単位は下記の通りです。

「群遅延の種類
GD: 群遅延 Group Delay
GDD: 群遅延分散 Group Delay Dispersion
CDC: 色分散係数 Chromatic Dispersion Coefficient
TOD: 3 次分散 Third Order Dispersion
FOD: 4 次分散 Fourth Order Dispersion
5OD: 5 次分散 Fifth Order Dispersion

群遅延の単位	
fs, ps	

スペクトル範囲・入射角範囲は、メインウインドウの計算範囲設定欄で設定します。 群遅延の単位は、メインウインドウの[ツール]-[オプション]-[位相・群遅延]の「群遅延の単位」で設定し ます。

群遅延の計算は、光学定数(n,k の分散式)も含めて微分しています。 誤差が大きい数値微分(差分)は使用していません。

Sheet 選択ボックスで、メインウインドウのどのシートのグラフを表示するかを選択できます。

👿 スペクトルグラ	フ 群遅延						
All sheets	GD;GDD;TOD		🕜 Rs;Rp			- 💷 グラフ	書式設定(E)
All sneets Sheet1 Sheet2: [Empt Sheet3: [Empt	y]			_		She She	et1 GD Rs et1 GD Rp
Sheet4: [Empt	y] 10 450 y]	500	550 波長	600 (nm)	650	700	750
Sheet8: [Empt Sheet8: [Empt Sheet9: [Empt	y] y]					- Sheet Sheet	1 GDD Rs 1 GDD Rp
Sheet10: [Emp Sheet11: [Emp Sheet12: [Emp	oty] ¹⁰ 450 oty]	500	550 波長	600 (nm)	650	700	750
Sheet13: [Emp Sheet14: [Emp Sheet15: [Emp Sheet16: [Emp	oty] oty] oty]					Shee Shee	t1 TOD Rs t1 TOD Rp
Sheet17: [Emp Sheet18: [Emp Sheet19: [Emp	oty] oty] oty]	500	550 波長	600 (nm)	650	700	750
Sheet20: [Emp	oty]?] 400-800 nm						

GD の種類選択ボックスで、GD の種類を選択できます。

計算種類選択ボックスで、反射・透過・偏光・裏面等の計算種類を選択できます。

※群遅延グラフは、メインウインドウ下部の 計算種類選択欄とは連動しません。

グラフウインドウ上部の計算種類選択ボック スで選択します。

グラフは GD 種類別に表示されます。ツールバーで並べ方を変更できます。

TFV ユーザーズガイド

メインウインドウ上部のツールバーから「⁺オスタックウインドウ」を選択するか、メインメニューの[表示]-[⁺オスタックウインドウ]を選択すると、複数の平行平面基板の多重反射を考慮した計算をおこなうためのスタックウインドウが表示されます。

スタックの計算結果は、スペクトルグラフ・入射角グラフ・色計算で表示出来ます。

🍯 TFV — 🗆 🗙	(♥ スペクトルグラフ − □ X					
ファイル(E) 編集(E) 表示(V) シート選択(S) ツール(I) ヘルプ(出)	… グラフ書式設定(E)… 🦕 ユーザーライン▼ 🤔 分光光度計▼ 📄 コピー(C)▼ Ωω その他▼					
🔊 🖻 🔛 📈 3D 🗁 🖓 🖍 🕨 🖬 🗛 🗤 🎍	5.0					
波長 • nm • R,T,A単位 >	4.5					
380 - 780 step 1 nm 詳細 適用 % 🔽	4.0					
0 - 60 step 1 deg, Ref= 500 nm リセット <	3.5					
Sheet1 4L-3 Sheet3 Sheet4 Sheet5 Sheet6 Sheet7 Sheet8 Sheet9 Sheet*	\$ 3.0					
Center 500 nm, Angle 0 deg	× 25					
Substrate N-BK7(SCHOTT)						
Thickness n and k profile	1.5					
No. <u>nd/λ</u> nm Material dn dk 不均質	10					
1 0.2500 75.56 Al2O3 0.0000 0.0000	1.0					
2 0.5000 121.97 ZrO2 0.0000 0.0000	0.5					
3 0.2500 90.27 MgF2 0.0000 0.0000	0.0					
う スタック (基板・媒質界面での多重反射) – ロ	波長 (nm)					
Medium 1 編集(E) シート選択(S)	1範囲 [ZrO2] 400-800 nm					
✓ Ra □ Rs □ Rp □ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	16 17*					
□ Aa □ As □ Ap □ 基板・媒質の数 1・・・	青線:表面側の膜の分光特性					
□ Frs □ Frp □ dFr □ 入射角 (deg): 0	赤線・裏面側の瞙の分光特性					
厚						
入射媒質 1	「無称:「回面音計の方式特性」					
膜(表向き) Sheet1						
基板 N-BK7(SCHOTT)	1					
膜(裏向き) Sheet2: 4L-3 🗸 🗸						
出射媒質 1	フカッカム ハ バム					
	スタック・フィント・フ					
🛛 Ra 🗌 Rs 🗌 Rp 🗌 Ta 🗌 Ts 🗌 Tp 🛛	□裏面					
□ Aa □ As □ Ap □ ODa □ ODs □ ODp 選	択解除					

入射媒質と出射媒質の間に、「膜」と「基板または媒質」を交互に配置します。

シートが20あり、複数の構成を同時にグラフ表示・数値表示することができます。

【スタックの設定項目】

項目	内容
基板・媒質の数	基板と媒質の数を設定します。
	数字の横の小さいボタンを押すと、「膜」と「基板・媒質」が1つずつ合計2 行増えたり減ったりします。
	数字の横の大きいボタンを押すと、「膜」と「基板・媒質」が 2 つずつ合計 4 行増えたり減ったりします。
	ソフト上は基板・媒質合計 5000 まで入力できるようになっています。
	計算速度の関係上、実用的には波長範囲にもよりますが 数十程度までと思われます。
入射角	入射媒質から最初の基板表面に入射する光線の入射角を設定します。
入射媒質	入射媒質を設定します。
	入射媒質は常に吸収係数(k)=0として計算されます。
膜(表向き)	膜を設定します。

TFV ユーザーズガイド

膜(裏向き)	メインウインドウのシートに表示されている膜を選択できます。
マウスでクリックすると、 表向きか裏向きかを選 択できます。	[None]を選択すると膜が無い状態になります。
	[膜(表向き)]は、スタックウインドウの上側が入射媒質、下側が基板とし た向きに膜を配置します。
	[膜(裏向き)]は、スタックウインドウの下側が入射媒質、上側が基板とし た向きに膜を配置します。
基板	基板・媒質を設定します。
^{米貝} マウスでクリックすると、	媒質から媒質までを 1 つのブロックとして、ブロックごとの分光特性を数 値表示できます。グラフにはブロックごとの分光特性は表示されません。 全体の構成の分光特性のみがグラフ表示されます。
基板か媒質かを選択で きます。	※ブロックについては次項を参照してください。 ブロックごとに交互に色分けされます。 基板と媒質は、光学的には何ら違いはありません。ブロックを分けるため に基板と媒質を区別しています。
出射媒質	出射媒質を設定します。
厚さ(mm)	基板・媒質の厚さを mm の単位で設定します。
	厚さは、基板・媒質の内部透過率が 100 未満の場合に意味を持ちます。
	全波長域に渡って内部透過率が 100 の場合は厚さを変えても分光特性 は変化しません。
	厚さを0に設定した場合、内部透過率100として計算します。厚さを0に しても基板・媒質が無い状態にはなりません。
Ra, Rs, Rp, Ta, Ts, Tp,	計算する種類を選択します。
Aa, As, Ap, Uda, UDs, ODp, 裏面	Ra: 反射率(平均)、Rs: 反射率(S 偏光)、Rp: 反射率(P 偏光) Ta: 透過率(平均)、Ts: 透過率(S 偏光)、Tp: 透過率(P 偏光) Aa: 吸収率(平均)、As: 吸収率(S 偏光)、Ap: 吸収率(P 偏光) ODa: 光学濃度(平均)、ODs: 光学濃度(S偏光)、ODp: 光学濃度(P偏光)
	裏面: 出射媒質側からの入射光に対する分光特性を計算します。透過 率は表面・裏面どちらも同じ値のため、裏面の透過率は計算しません。

※ スタックの各面の膜の計算では、メインウインドウの膜構成の入射角・入射媒質・基板は無視され、スタックウインドウの入射角・入射媒質・基板が使用されます。

※ スタックの使用に関するヒント

スタックの機能は、 膜: コヒーレント(光が干渉する) 基板・媒質: インコヒーレント(光が干渉せず多重反射する) として計算をおこないます。 金属など強い吸収がある物質の場合、厚いと光が透過しなくなります。

このような物質はスタックの入射媒質、途中の基板や媒質としては使われません。 膜や出射媒質(基板)として使ってください。

色ガラスなど弱い吸収がある物質の場合、吸収係数(k)=0とし内部透過率を設定してご利用ください。

😈 スタック (基板・媒質・	界面での多重反射)	– 🗆 🗙
編集(<u>E)</u> 表示(<u>V</u>)		
1 2 3	4 5 6	7 8 9 < >
基板	・媒質の数 7	
入射	角 (deg.): 0 🖗	
		厚さ(mm)
入射媒質	1	
膜(表向き)	Sheet1	
基板	N-BK7(SCHOTT)	1.00
膜(裏向き)	Sheet2	
媒質	1	1.00
膜 <mark>(</mark> 表向き)	Sheet3	
基板	N-BK7(SCHOTT)	1.00
膜 <mark>(</mark> 裏向き)	Sheet4	
媒質	1	1.00
膜(表向き)	Sheet5	
基板	N-BK7(SCHOTT)	1.00
膜(裏向き)	Sheet6	
媒質	1	1.00
膜(表向き)	Sheet7	
基板	N-BK7(SCHOTT)	1.00
膜(裏向き)	Sheet8	
出射媒質	1	
Ra Rs R Aa As A	p □Ta □Ts □Tı p □ □Ta □Ts □Tı	」) 面

このように複数の基板の両面に膜が 付いた場合の合計の分光特性を計算 できます。

• ブロックについて

スタックの計算は、入射媒質から出射媒質までの合計の計算をしますが、途中の基板だけの分光特 性を確認したいという場合もあるかと思います。そのような場合にブロックを設定して、ブロック毎の分光 特性を数値表示することができます(グラフには表示されません)。

媒質から媒質までを1つのブロックとして、ブロックごとの分光特性を数値表示します。

•例 1

•例 2

\) 75	ック (基板・媒質)	界面での多重の	又射)	—		×
編集(<u>E</u>)	表示(⊻)					
1	2 3	4 5	6	7	8	9 < >
	基板	・媒質の数		3 < <	> >	
	入射	角 (deg.):		0		
					厚さ <mark>(</mark> ၊	nm)
	入射媒質	1				
	膜 <mark>(</mark> 表向き)	Sheet1				
	基板 N-BK7(SCHOTT)				1.00	
	膜(裏向き) Sheet1					
	基板 1				1.00	
	膜(表向き) Sheet1					
	基板 N-BK7(SCHOTT)				1.00	
	膜 <mark>(</mark> 裏向き)	Sheet1				
	出射媒質	1				
⊠ Ra □ Aa	Rs R	p □Ta[p	∃Ts	□ Tp □ 裏面		

ブロックなし

•例3

スペクトルグラフまたは入射角グラフを右クリックし、[数値データー表示]を選択すると、スタックウイン ドウの構成全体の分光特性とブロックごとの分光特性が表示されます。

1	🔰 波長データ	7-			—		×
Ę	<u>ר</u> לב (<u>כ</u>)						
Γ	波長(nm)	Sheet1(Ra)	スタック 1(Ra)	スタック1-1(Ra)	スタック1-2	2(Ra)	^
	380	2.583477606	9.082413118	4.502322921	5.03326	5045	
	381	2.445031814	8.619593469	4.256861276	4.77010	3090	
	382	2.312149033	8.173186890	4.021928114	4.51683	7313	
	383	2.184718008	7.743132762	3.797316755	4.27333	5502	
	384	2.062622466	7.329331276	3.582806784	4.03945	0912	
	385	1.945741726	6.931645606	3.378165570	3.81502	3484	
	386	1.833951296	6.549904187	3.183149743	3.59988	1051	
	387	1.727123440	6.183903059	2.997506639	3.39384	0527	
	388	1.625127724	5.833408278	2.820975690	3.19670	9066	
	389	1.527831531	5.498158348	2.653289764	3.00828	5201	
	390	1.435100559	5.177866674	2.494176455	2.82835	9943	
	最大	2.615381789	9.229443306	4.582655862	5.09669	3940	
	最小	0.043510567	0.326275819	0.155909951	0.08695	5945	
	平均	0.569680009	2.148990397	1.082644504	1.12296	3878	~

Sheet1	メインウインドウ Sheet1 の膜の分光特性
スタック1	スタックウインドウシート 1 の全体の構成の分光特性
スタック 1-1	スタックウインドウシート1のブロック1の構成の分光特性
スタック 1-2	スタックウインドウシート1のブロック2の構成の分光特性

• 貼り合わせガラスなどの構成

•例 1

ガラスとガラスを、膜を挟まずに接触させるには、次のように膜を[None](膜無し)とします。

この例では N-BK7(SCHOTT)と Quartz の間の膜は[None] (膜無し)のため、2 つのガラスが接触した 状態になります。

😈 スタック (基板・媒質系	界面での多重反射) ー	□ ×
編集(<u>E)</u> 表示(<u>V</u>)		
1 2 3	4 5 6 7	8 9 < >
基板	・媒質の数 2 📢	>
入射	角 (deg.): 0 🔗	
		厚さ <mark>(mm)</mark>
入射媒質	1	
膜 <mark>(</mark> 表向き)	Sheet1	
基板	N-BK7(SCHOTT)	1.00
膜 <mark>(</mark> 裏向き)	None	
基板	Quartz	1.00
膜(裏向き)	Sheet1	
出射媒質	1	
☐ Ra ☐ Rs ☐ R ☐ Aa ☐ As ☐ A	p □ Ta □ Ts □ Tp p □ □ 表面	

•例 2

ガラスとガラスの間にフィルムや接着剤などが挟まっていて、フィルムや接着剤の厚さが厚く、可干渉 距離を超えていると思われる場合はフィルムや接着剤を基板と考えて、次のようにします。

この例では、2枚の BK7 の間に厚さ 0.1mm の PMMA が挟まれています。

ور 😻	ック (基	板·媒質	界面での	多重反!	时)	—		×
編集(<u>E</u>)	表示(<u>v</u>)						
1	2	3	4	5	6	7	8	9 < >
		基板	·媒質	の数		3 < <)	
		入射	角 (de	g.):		0		
							厚さ	(mm)
	入!	射媒質	1					
	膜 (3	表向き)	Sheet	1				
基板			N-BK7(SCHOTT)			1.00		
膜(裏向き)			None					
		基板	PMMA		0.10			
膜(表向き)			None					
基板			N-BK7(SCHOTT)			1.00		
	膜 <mark>(</mark> 哥	表向き)	Sheet	1				
	出	射媒質	1					
⊠ Ra □ Aa	□ Rs □ As		p □⊺ p	Гa □	Ts	□ Tp □ 表面		
•例 3

ガラスとガラスの間にフィルムや接着剤などが挟まっていて、フィルムや接着剤の厚さが薄く、干渉領 域であると思われる場合はフィルムや接着剤を膜と考えて、次のようにします。

メインウインドウの Sheet2 に、フィルムや接着剤の単層膜を設定します。

3.6.11.1.スタック構成のコピー・貼付・反転

スタックウインドウのメニューから、[編集]を選択するか、タブを右クリックすると表示されるメニューで、 スタック構成のコピーや貼付などができます。

Ø	スタック (基板・媒質)	界面での多重反射)		
編集	(<u>E)</u> 表示(⊻)			
	このスタックを他のシ	ートヘコピー(<u>s</u>)		9 < >
0	このスタックをクリア			
R)	スタックをクリップボ-	・ドにコピー (表計算ソフト則	占付用)(<u>E</u>)	
11	スタックを反転(<u>R</u>)			۹ (mm)
	入射媒質	1		
	膜(表向き)	Sheet1		
	基板	N-BK7(SCHOTT)		1.00
	膜(裏向き)	Sheet1		
	出射媒質	1		
	Ra □Rs □R Aa □As □A	p □Ta □Ts [p [□Tp □表面	

このスタックを他のシートヘコピー	表示されているスタック構成を他のシートへコピーします。
このスタックをクリア	表示されているスタック構成をクリアして空の状態にします。
スタックをクリップボードにコピー (表計算ソフト貼付用)	表示されているスタック構成をクリップボードへコピーします。 表計算ソフトなどへ貼り付けることができます。
スタックを反転	表示されているスタックの上下を反転させます。

3.6.11.2.スタックウインドウ シートの選択

隠れているシートを選択するには、[スクロールボタン]をクリックしてシートのタブを表示させてからタブ をクリックするか、メニューから[シート選択]をクリックして表示させたいシート(スタック)を選択します。

3.6.12.<u>基板·媒質の内部透過率</u>

分散データー編集画面で、屈折率(n)、吸収係数(k)の他に内部透過率を登録します。

内部透過率は、波長(nm)・厚さ(mm)ごとに登録します。複数の厚さを登録できます。

計算時は、スタックウインドウで指定した基板・媒質の厚さに最も近い厚さの登録データーを直線補間 して内部透過率を求めます。登録データーのちょうど中間の厚さの場合は薄い方の厚さのデーターを使 用します。

境界面での反射・透過の計算には k を用い、基板や媒質内での減衰の計算には内部透過率を用います。必要に応じて k と内部透過率をそれぞれ登録してください。

😻 分散データー編集					- 🗆	×
🗋 新規作成 🕼 名前	前変更 🐚コピー 🗙 削除					
MP-LAF81(Hi ^	分散データー名: N-BK7(SCHC	OTT)	-プレビュー			
- MP-NBF1(HC	備考		1.56	1 1		
- MP-NBFD10-	タイトル: N-BK7		1.55			
- MP-NBFD130	TX: SCHOTT Ontical G	ass Catalog November 2014	1.54			
- MP-PCD4-40			1.53+4	N I		
- MP-PCD51-7	有効範囲(nm):	312.5663 to 2325	.42			~
- MP-TAC60-9			15			
- MP-TAC80-6	分散の種類		1,49			
- MP-TAF101-	○ 直線補間(Table) ● 分散式	n: Sellmeier				
- MP-TAF105(k: Zero	~	500 1,000 1,5	00 2,000	
- MP-TAF31-1!		2010		/皮 」 定(rim,	,	_
- MP-TAF401(1	内部诱杀员家(工)	-= -(a)		
- MP-TAFD305	A0 1.03961212		113802094(1)	直線1	潮间(Table)	~
- MP-TAFD307	A1 0.231792344		波長(nm)	Ti(%)	厚さ(mm)	1 ^
MP-TAFD51-	A2 1.01046945	κ = 0	200	62	10	
- N-BAF10(SCI	A2 0.00600060867		230	0.5	10	
N-BAF3(SCH	A5 0.0000009607		300	29.2	10	2
N-BAF4(SCH	A4 0.02001/9144		310	57.4	10)
N-BAF51(SCI	A5 103.560653		320	77	10)
			334	90.5	10)
N-BAK2(SCH				o 😑 🛯 / 🗆 /	5 1 🗍 Wallo	- ×
N-BAK4(SCH	□ クリア 🗎 コピー 🚺 賠付		007 🖬 LE	1997 - 📔 貼打 🚽 打	●人 ⇒ 削除	
N-BAK4HT(S	$A_0\lambda^2 = A_1\lambda^2$	$A_{2}\lambda^{2}$				
-N-BALE4(SC)	$n(A) = \sqrt{1 + \frac{1}{A^2 - A}} + \frac{1}{A^2 - A} + \frac{1}{A^2 - A} + \frac{1}{A^2 - A}$	$\frac{1}{\partial^2 - A_1}$				
-N-BALF5(SCI	V ~ 23 × 24	~~ ~~ <u>5</u>				
						_
-N-BASF2(SCI -	1 適田	- 🔄 リセット - 分散式の速車の道	i 付けumです		P Pq ₁	z

内部透過率の登録の種類

種類	内容
内部損失無し(Ti=100%)	内部透過率(Ti)入力欄右上のコンボボックスで、「内部損失無し(Ti=100%)」を選択すると、内部損失無し(Lossless)となります。
直線補間(Table)	内部透過率(Ti)入力欄右上のコンボボックスで、「直線補間(Table)」を選択すると、波長ごとに内部透過率(Ti)、厚さを登録できます。
	波長と波長の間は直線補間で内部透過率を求めます。
k から内部透過率を計算	内部透過率(Ti)入力欄右上のコンボボックスで、「k から Ti を計算」を選択すると、吸収係数(k)から Lambert-Beer の 法則を用いて内部透過率を計算します。

※ スタックウインドウで厚さを 0mm にすると、内部透過率 100 として計算します。

3.6.13.計算結果を数値で表示する

すべての計算結果は、グラフ表示だけではなく、数値で表示することができます。 結果を数値で表示するには、グラフを右クリックし、ポップアップメニューから【¹23数値データー表示】を 選択します。

ユーザーライン・分光光度計ラインも数値表示されますが、メインウインドウの計算範囲・計算間隔で 直線補間した値となります。

3.7. 最適化機能(1) 標準モード

最適化機能を呼び出すには、ツールバーの設計の最適化⁰をクリックします。 TFV の最適化には、標準モードとフリーハンドモードの2つのモードがあります。 この章では標準モードについて説明します。次の章でフリーハンドモードの説明をします。

標準モードは、一般的な最適化をおこないます。

ローカルサーチ・グローバルサーチ・ニードルサーチの3種類の最適化手法の中から選択して最適化をおこ ないます。

😈 設計の最適化		– o x
標準モード フリーハンドモード		
1. 初期設計 [F1]	4. 最適化 [F4]	5. 結果
×	ローカルサーチ	~ I I I I I I I I I I I I I I I I I I I
2. ターゲット		No. Merit 層数 総膜厚 (nm) 最小膜厚 (nm) 最大膜厚 (nm)
○系列から選択 ○ ターゲット値入力		
スペクトルグラフ · 設定… [F2]	◎停止 [F8]	
· · · · · · · · · · · · · · · · · · ·		
種別		
ねらい ターゲット値		A
3. 結果を表示するシート [F3]		
~		● 前の結果 ⑦ 次の結果 □ コピー(C)
◆設定 [F12]		閉じる

• 項目の説明

1. 初期設計	最適化を行いたい設計を選択します。
	Sheet に表示されている設計の中から選択できます。
2. ターゲット	
系列から選択	波長グラフ・入射角グラフに表示されているユーザーライン・分光光度計
	ライン・他のシートの計算値をターゲットとして選択できます。
	種別: Ra, Rs, Rp, Taの中からターゲットの種別を選択します。
	ねらい:「ターゲット値」・「ターゲット値以上」・「ターゲット値以下」の中か
	ら選択します。
ターゲット値入力	設定ボタンを押すとターゲットを入力する画面が表示されます。
	波長・入射角の複合ターゲット、複数の偏光が含まれるターゲット、重み
	付けなど、複雑なターゲットを設定できます。
3. 結果を表示するシート	最適化結果を表示するシートを選択します。
4. 最適化	ローカルサーチ、グローバルサーチ、ニードルサーチの中から使用した
	い最適化手法を選択します。
	ローカルサーチ: 層数固定で膜厚のみを最適化します。
	グローバルサーチ: 層数固定で膜厚のみを最適化します。膜厚を大きく
	変えながら最適化を繰り返すことで複数の解を求めます。
	ニードルサーチ:層数を増やしながら最適化します。
開始ボタン	開始ボタンを押すと最適化を開始します。
停止ボタン	停止ボタンを押すと最適化を強制的に終了させることができます。
継続ボタン	ニードルサーチを継続したい場合に使用します。
	ニードルサーチの場合のみ使用できます。
設定ボタン	最適化パラメーターの設定をおこないます。

TFV ユーザーズガイド

5. 結果	得られた解の、Merit 関数の値、層数、膜厚の情報を表示します。Merit が小さいものほどターゲットに近い解です。 複数の解が得られた場合は、複数の行が表示されます。行を選択する とその膜構成がメインウインドウのシートに表示されます。
	No.: 得られた解の番号。Merit 関数の値の小さい(ターゲットに近い)順 に解が並びます。
	Ment. Ment 寅鈒の値。Ment = $\sqrt{\frac{N}{N} \sum_{i=1}^{n} (T_i - T_i)^2}$ N: ターゲットの数 T _j : 計算値 T _j : 字ーゲット値
	総膜厚: 全層の物理膜厚の合計 最小膜厚: 最も薄い層の物理膜厚 最大膜厚: 最も厚い層の物理膜厚

• ターゲット値入力の説明

「ターゲット値入力」ボタンを押すとターゲットを設定する画面が表示されます。

スペクトル・入射角を任意に設定でき、各データー毎に重み付けを設定できます。また、Ra, Rs, Rp, Ta...の種別やねらいを複数組み合わせて使用できます。

🦉 ターゲット値入力								- 🗉	
🕑 ターゲットを開く 🔛 ターゲット	を保存 <mark>リ</mark> ー ユー	ザーライン 凒	分光光度計 🖽	グラフ系列					
ターゲットファイル: Sample_/	٩R								
ターゲットグループ	ターゲッ	トデーター							
Data1	入力91	(プ 離散値	í.	• 值·	タイプ Ra: E	支射率 [sp平均]	- ねらい ター	ゲット値以下	~
Data2	離散値	ターゲット							
Data3	スペクト	ルの種類と	単位	値の単	位				
Dutur	波長		nm	- %					
	(市田)	皮長 (nm)	ターゲッ 3 町毎 (dog)	(病 (0/)	舌ン				1
	· 🗹	友愛 (nm) 380	八射两 (deg) 0	但 (%)	里の 1				
		385	0	1.5	1				
		390	0	1	1				
		395	0	0.75	1				
		400	0	0.5	1				
🔒 追加 🔒 削除	D 77	באר (C)	貼付(⊻) == 排	挿入()) ➡ 削除()	2)				
このターゲットのメモ	このデー	ターのメモ							
AR target sample 0- 45deg.	0deg.								
チェックを付けた項目がターゲ	ットとして使用	されます。						K Ca	ncel

ターゲットグループ	種別やねらい毎に Data1, Data2…というようにデーターを分けて設定します。 同じ種別・ねらいであっても入射角毎に分けるなど、グループ内の Data の分け 方は自由です。
	チェックを付けた項目がターゲットとして使用されます。チェックの on, off によっ て手軽にターゲットの組合せを変更することができます。
	「このターゲットのメモ」欄にターゲットのメモを記入することができます。
🔒 追加	ターゲットグループ欄に Data を追加します。
→ 山除	ターゲットグループ欄から選択されている Data を削除します。
ターゲットデーター	ターゲットグループ欄で選択された Data の値が表示されます。
	値は、直接入力、ユーザーラインデーターファイル・分光光度計データーファイ
	ルからの読み込み、グラフ系列からのコピーができます。また、Excel などから
	のコピー・ペーストも可能です。
	「このターゲットのメモ」欄に Data 毎のメモを記入することができます。
ターゲットを開く	保存されているターゲットファイルを開きます。
ターゲットを保存	作成したターゲットをファイルに保存します。
ユーザーライン	ユーザーラインデーターファイルからデーターを表に読み込みます。
分光光度計	分光光度計データーファイルからデーターを表に読み込みます。
グラフ系列	グラフに表示されている系列からデーターを表に読み込みます。

● ターゲットのタイプ

[離散値]

行毎に1点1点をターゲットとして入力します。

下図は、波長 500nm での垂直入射の反射率 0%と波長 600nm での垂直入射の反射率 0%を ターゲットとする例です。

ターゲットを保存 ユーザーライン の光光度計 ゴクフ系列 ターゲットファイル: (無題) ターゲットブークー ターゲットプレーブ ターゲット フata1 ノカタイブ 踏散値 (の単位) 波長 nm % クーゲット スペクトルの種類と単位 値の単位 波長 nm % クーゲット 2000000000000000000000000000000000000	🦉 ターゲット値入力				
ターゲットプルレーブ ターゲットプーター ターゲットグルーブ ターゲットデーター スカタイブ 離散値 ● 値タイプ Ra: 反射率 [sp平均] ねらい ターゲット値 離散値 ターゲット スペクトルの種類と単位 値の単位 波長 nm % ターゲット マウゲット 支援 nm % ターゲット マウゲット 使用 波長 (nm) 入射角 (deg) 値 (%) 重み ● 600 0 0 1 ● 600 0 0 1 ● 600 0 0 1 ● 600 0 1 1 ● 600 0 1 1 ● 1907 コー 1 1 ● 700 エーレーン エーレーン 1 ● 700 エーレーン エーレーン 1 ● 100 エーレーン 1 1 ● 100 エーレーン 1 1 ● 700 エーレーン エーレーン 1 <td>🎐 ターゲットを開く 🔛 ターゲット</td> <td>を保存 🟪 ユーザーライン 🤔 分光光度計 🎟 グラフ系列</td> <td></td> <td></td> <td></td>	🎐 ターゲットを開く 🔛 ターゲット	を保存 🟪 ユーザーライン 🤔 分光光度計 🎟 グラフ系列			
ターゲットグルーブ ターゲットデーター 入力タイブ 離散値 値タイブ Ra: 反射率 [sp平均] ねらい ターゲット値 構数値 ターゲット スペクトルの種類と単位 値の単位 波長 nm % ターゲット スペクトルの種類と単位 値の単位 波長 nm % ターゲット マーゲット スペクトルの種類と単位 値の単位 波長 0 0 クーゲット (個の単位 波長 0 0 9ーゲット (個の単位 200 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 20ターゲットのメモ このデーターのメモ	ターゲットファイル: (無題)				
Catal 入力タイプ 離散値<	ターゲットグループ	ターゲットデーター			
離散値 ターゲット スペクトルの種類と単位 値の単位 波長 9-ゲット 使用 波長 (nm) 入射角 (deg) 値 (%) 重み 0 0 0 1 0 600 0 0 1 0 600 0 0 1 0 600 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	⊡Data1	入力タイプ 離散値 · 値タイプ Ra: 反射率 [sp平均] · ね	らい ターゲット値		
スペクトルの種類と単位 値の単位 波長 nm % ターゲット 使用 使用 次長(nm) 入射角(deg) 値(%) 1 0 0 2 500 0 0 0 1 0 0 1 1 1 2 1 2 1 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1		離散値 ターゲット			
波長 nm % ターゲット 使用 次長(nm)入射角(deg) 値(%) 1 0 0 2 600 0 1 2 600 0 1 2 0 0 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1		スペクトルの種類と単位値の単位			
ターゲット 使用 波長 (nm) 入射角 (deg) 値 (%) 重み 0 0 0 0 0 0 0 1		波長 - nm - % -			
使用 波長 (nm) 入射角 (deg) 値 (%) 重み 500 0 600 0 600 0 1 1		ターゲット			
・ 0 500 0 0 1 0 600 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		使用 波長 (nm) 入射角 (deg) 値 (%) 重み			
COターゲットのメモ COデーターのメモ		· 🖸 500 0 0 1			
■ 追加 ● 例除 2 のターゲットのメモ 2 のデーターのメモ のメモ 		600 0 0 1			
		1			
追加					
▲追加 4 削除 2 プリア・コエー(L) 航付(0) 3- 挿入(0) 3→ 削除(D) このターゲットのメモ このデーターのメモ					_
このターゲットのメモ このデーターのメモ	₩ 追加 ⊌ 削除	」ソリア =」ビー(C) 話付(V) 挿入(I) =>* 削除(D)			
	このターゲットのメモ	このデーターのメモ			
チェックを付けた項目がターゲットとして使用されます。 QK Canc	チェックを付けた項目がターゲ	[・] ットとして使用されます。	QK	Cance	el

[連続値(スペクトル)]、[連続値(入射角)]

波長OOnm からOOnm までの反射率がO%、入射角OO度からOO度までの反射率がO% など、連続的な値をターゲットとして入力します。

下図は、波長 400nm から 700nm までの垂直入射の反射率 50%をターゲットとする例です。波 長ステップの欄に 5nm と入力されています。実際に設定されるターゲットは、400, 405, 410, ..., 700nm の合計 61 波長に対して反射率 50%となります。

斜めのラインをターゲットにしたい場合は、例えば下図で、値(開始)に 50, 値(終了)に 0 を入力 すると、400nm, 50%から 700nm, 0%までの斜めの直線上の 1 点 1 点がターゲットになります。

[平均]の欄にチェックを入れると平均値がターゲットになります。下図の例で[平均]にチェックを入れると、400,405,410,...,700nmの合計 61 波長の反射率の平均値が 50%になるように最適化がおこなわれます。

😻 ターゲット値入力	- o x
🤔 ターゲットを開く 🚼 ターゲッ	▶を保存 🖣 ユーザーライン 🕑 分光光度計 💷 グラフ系列
ターゲットファイル: (無題)	
ターゲットグループ	ターゲットデーター
Data1	入力タイプ 連続値 (スペクトル) 値タイプ Ra: 反射率 [sp平均] ・ ねらい ターゲット値
	連続値 (スペクトル) ターゲット
	スペクトルの種類と単位 値の単位
	波長 nm 🥑 % 🔽
	ターゲット
	使用 波長 (nm) 開始 値 (%) 開始 波長 (nm) 終了 値 (%) 終了 平均 波長 (nm) 間隔 入射角 (deg) 重み
	· 🗹 400 50 700 50 🗆 5 0 1
월 追加 월 削除	□ クリア - □ コビー(Q) □ 貼付(Q) □ ○ 挿入(I) □ → 削除(Q)
このターゲットのメモ	このデーターのメモ
チェックを付けた項目がター	プットとして使用されます。 QK Cancel

[色]

視野、光源、表色系を選択し、色座標毎にターゲットを設定します。 複数のターゲットを設定したい場合はターゲットグループを追加します。

🦉 ターゲット値入力								
🤔 ターゲットを開く 🔛 ターゲッ	トを保存 Var ユーザー	-ライン 🖄 分光	光度計 🎟	プラフ系列				
ターゲットファイル: (無題)								
ターゲットグループ	ターゲットラ	データー						
^{III} Data1	入力タイプ	1 色		- 値タイプ Ra:	反射率 [sp平均]			
	色 ターゲッ	уŀ						
	10度視野	∛(CIE1964)	~	D65 💽 xyz	- 入射角 (deg)	0		
			ターゲット					
	色座標 ·x	使用 值	重み	ねらい 1 ターゲット値				
	У			1 ターゲット値				
	z		1	1 ターゲット値				
🔒 追加 🔒 削除	297) כל-(ב) 门 🐰	i付(⊻) 🔤 🗉	■入(I) 子 ·削除(D)				
このターゲットのメモ	このデーター	ーのメモ						
チェックを付けた項目がター	ゲットとして使用され	れます。				QK	Ca	ncel

設定したターゲットは、スペクトルグラフ、入射角グラフ、スペクトル・入射角複合グラフ、群遅延グラフ に表示されます。

ただしターゲットのタイプに色を指定した場合(色のターゲット)は、グラフ上にターゲットは表示されません。

レーベンバーグ・マーカート法(Levenberg-Marquardt Method)を用いて、膜厚を変更しながら最適解 を探索します。

開始ボタンを押すとローカルサーチを開始し、終了すると結果がシートに表示されます。

3.7.2.グローバルサーチ

焼きなまし法(Simulated Annealing Method)とレーベンバーグ・マーカート法を組み合わせた手法を 用いて、ローカルサーチの途中で膜厚をランダムに変更し、本来の解ではない局所解に陥るのを回避し ます。

開始ボタンを押すとグローバルサーチを開始し、終了すると下図のように数種類の解が結果欄に表示 されます。ターゲットに最も近い解から順番に並んでいます。行を選択するとその解の膜構成がシートに 表示されます。最もふさわしいと思う解を選択してください。

探索の回数などを設定するには、「設定」ボタンを押します。設定内容については、「3.13.1 オプション 設定」を参照してください。

😈 設計の最適化							—		×
標準モード フリーハンドモード			_						
1. 初期設計	4. 最適化		5. 結	果					
Sheet1: 8LTest	グローバルサーチ	~							
2. ターゲット	◎開始 継続		No.	Merit	層数	総膜厚 (nm)	最小膜厚 (nm)	最大膜	厚 (nm)
● シンプルターゲット 🔘 高度なターゲット			• 7	0.010042	8	429.39	8.49		155.03
スペクトルグラフ シ 設定…	◎停止		6	0.021256	8	417.89	11.10		108.67
Spectrometer: 8LTest		5	0.029207	8	394.13	0.00		139.85	
種別 Ra			4	0.029739	8	391.18	0.00		129.38
ねらい ターゲット値	探索時間: 0:00:04.411	^	3	0.030439	8	393.69	0.00		136.84
3 結果を表示するシート			2	0.031967	8	389.95	0.56		121.07
Sheet2	T		1	0.126393	8	543.66	2.17		263.01
Sheetz			0	初期設計	8	416.09	9.22		117.04
		Ŧ	🕑 前	の結果 🕜 🎖	次の結果	果 📄 コピー(<u>C</u>)			
●設定									閉じる

3.7.3.<u>ニードルサーチ</u>

針状の薄い層を挿入しながら多層膜を成長させ、解を探索します。

ニードル層の挿入→ローカルサーチ→ニードル層の挿入→ローカルサーチ というサイクルを繰り返し ます。

🝑 ニードルサーチパラメーター				×							
最大層数	61 🔄										
同時に挿入するニードル層の数	3座										
合成回数	10 🚔										
10 💮 nm 以下の層をなる	べく除外										
□ ニードルサーチの前にローカルサーチを実行											
ニードル層物質											
	使用		Material								
		AI2O3									
追加 🥹		ZrO2									
	\square	MgF2									
		(
1 1 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V			OK	Cancel							

開始ボタンを押すと次のような画面が表示されます。

●項目の説明	
最大層数	成長させる最大の層数を設定します。
	設定可能な最大値が初期値として設定されます。
同時に挿入するニードル層の数	ー度にニードル層を最大で何層挿入するかを設定します。
	効果がない場合はここで設定した数より少ない層が挿入されま
	す。
A D - Str	
合成回数	ニードル層挿入→ローカルサーチを繰り返す回数を設定します。
	途中で効果がなくなった場合は回数に達する前であっても探索が
	終了します。
~nm 以下の層をなるべく除外	物理膜厚が~nm 以下の層ができないよっに最適化をおこないま
	す。ただし~nm 以下の層が含まれている結果も表示します。
ニードル層挿入前にローカルサ	最初のニードル層挿入前にローカルサーチするかどうかを設定し
ーチする	ます。
ニードル層物質	ニードル層として挿入する物質を設定します。リストの上にある物
	質から優先的に挿入されます。[使用]欄にチェックが付いていない
	物質は使用されません。

OK ボタンを押すと最適化を開始します。

🔞 ニードルサーチパラメーター				×							
最大層数	61座										
同時に挿入するニードル層の数	3☆										
合成回数	10 🚔										
10 🔄 nm 以下の層をなる	べく除外										
□ ニードルサーチの前にローカルサーチを実行											
ニードル層物質											
	使用		Material								
		AI2O3									
追加 🕥		ZrO2									
	\checkmark	MgF2									
「日本		-									
 リセット 			OK Car	ncel							

次のように、結果欄に複数の結果が表示されます。Merit が小さい順(ターゲットに近い順)に並んで います。行を選択するとその膜構成がメインウインドウのシートに表示されます。

👅 設計の最適化										×
標準モード フリーハンドモード										
1. 初期設計	4. 最適化	-	5. 結	果						
Sheet1	ニードルサーチ	~								
2. ターゲット	◎開始 継続		No.	Merit	層数	総膜厚 (nm)	最小膜厚 (nm)	最大膜	厚 (nm)	
○ シンプルターゲット ♀ 高度なターゲット	1713×11 (102-17)C		• 31	0.067232	36	1679.86	0.29		246.93	
スペクトルグラフ	◎停止		30	0.073687	34	1661.67	10.00	1	253.11	
v			29	0.079119	24	1459.54	11.01		229.85	
種別 Ra			28	0.079473	34	1484.64	10.00		176.06	
ねらいターゲット値	探索時間: 0:00:05.663	^	27	0.080720	34	1494.65	10.00		186.67	
3 結果を表示するシート			26	0.082178	22	1530.41	10.00	1	244.27	
Sheet2			25	0.084096	24	1653.09	2.31		401.29	
Sheetz			24	0.085123	28	1257.84	10.00	1	188.51	
		Ŧ	🕑 前	の結果 🕜 🎖	次の結!	ת של -(ב)				
●設定									閉じる	5

• ニードルサーチの継続

ニードルサーチをおこなうと、「継続」ボタンが押せるようになります。 継続ボタンを押すと、ニードルサーチを継続します。 ニードルサーチパラメーター画面の「合成回数」を増やすと継続ボタンを押す回数を減らせます。

参考文献: Sh. A. Furman and A.V.Tikhonravov, "Basics of optics of multilayer systems", Editions Frontiers, 1992

3.7.4. 最適化での各層の設定

最適化機能を呼び出すとメインウインドウが横に広がり、各層の最適化用の設定欄が表示されます。

TFV	,								-	- 🗆	×		
ファイル(E) 編集(E)	表示(V) シ	-ト選択(<u>S</u>) ツー	ル(I) ヘルプ(H)									
🤌 🖻 🖡													
波長		~ nm			V F	R,T,A単位	>						
3	380 - 7	780 step	1 nm	詳細	適用	% 🔽							
0 -	60 step	b 1d	eg, Ref=	500 nm	リセット		<						
Sheet1 Sheet2 Sheet3 Sheet4 Sheet5 Sheet6 Sheet7 Sheet8 Sheet9 Sheet10 Sheet11 Sheet12 Sheet13 She*													
Center 500 mm, Angle 0 deg													
Substrate N-BK7(SCHOTT)													
	Thick	ness		n and k p	rofile		1		最適化				
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均質	On	Min	Max	単位	Needle		
1	0.2500	75.56	AI2O3	0.0000	0.0000			0.0000	0.0000	nd/λ			
2	0.5000	121.97	ZrO2	0.0000	0.0000			0.0000	0.0000	nd/λ			
3	0.2500	90.27	MgF2	0.0000	0.0000			0.0000	0.0000	nd/λ			
					_								
Mediu	m 1				× .								
🗹 Ra	🗌 Rs 🗌	Rp 🗌 Ta	a 🗌 Ts 🗌	Тр 🗌	裏面								
🗆 Aa	🗆 As 🛛	Ap 🗆 C	Da 🗌 ODs 🗌	ODp									
🗆 Frs	Frp	dFr 🗆 F	ts 🗌 Ftp 🗌)dFt 選	択解除								

※ ヒント 設計の最適化画面で [初期設計]に指定したシー トのタブは青色、 [結果を表示するシート]に 指定したシートのタブはピン ク色になります

Opt	この層を最適化の対象にするかどうかを設定します。
Min	最適化時に許容する最小膜厚を設定します。
Max	最適化時に許容する最大膜厚を設定します。
	0に設定した場合は、「3.13.1オプション設定」の「最適化」膜厚最大値が使用されます。
単位	最小膜厚と最大膜厚を光学膜厚で設定するか物理膜厚で設定するかを選択します。
Needle	ニードル層挿入の対象にするかどうかを設定します。

3.7.5. 複数基板 (スタック)の最適化

スタックウインドウを表示すると、初期設計にスタックを選択することができます。スタックで使用されて いる膜構成全てを同時に最適化し、スタックの分光特性をターゲットに近づけます。

3.8. 最適化機能(2) フリーハンドモード

フリーハンドモードは、グラフ上の特性をマウスでなぞって変形させると、その変形させた形になるよう にローカルサーチで最適化をおこなう新しいタイプの最適化方法です。 スペクトルグラフと入射角グラフで使用できます。

3.8.1.基本操作

3.8.2.複数の系列が表示されている場合の動作

🤨 設計の最適化	- 🗆	×
標準モード フリーハンドモード		
最適化する系列	最適化	
Sheet1: Sheet1(Ra) [波長グラフ] く		
☑ 表示されている他の系列を固定する	停止	
選択した 系列を マウスの左ボタンを押しながら なぞって 変形させてください。		
マウスを往復させると、 往復させた回数に応じてその部分の重みが増えます。		
マウスのボタンを放すと最適化が始まります。		
		~
🖕 設定		閉じる

最適化をおこなう設計に対して複数の種別の系列がグラフ表示されているときに、「表示されている他の系列を固定する」にチェックを入れると、表示されているすべての系列をターゲットとして最適化します。

例えば、Sheet1 の Ra についてフリーハンドモードの最適化をおこなうときに、グラフ上に Sheet1 の Ra 裏面と Ta が表示されていて「表示されている他の系列を固定する」にチェックが入っていると、マウ スで変形した Ra・Ra 裏面・Ta の 3 つの系列をターゲットとして最適化がおこなわれます。チェックが入っていない場合は、マウスで変形した Ra のみをターゲットとして最適化がおこなわれます。

3.8.3.マウスによる重み付け

マウスを往復させると、往復させた回数に応じてその部分の重みが増えます。

マウスの左ボタンを押しながらグラフの系列を変形させたとき、マウスがデーター点(の X 座標)を通過 するたびにそのデーター点の最適化の重みが1増えます。

例えば、スペクトルグラフの Ra の 500nm~550nm の範囲の形状を変形させる場合に、500nm~ 550nm の範囲をマウスで2往復させて変形させると500nm~550nm の範囲のデーター点の重みが4 になります。他の範囲および他の系列のデーター点の重みは1です。

3.9. 設計データーの新規作成・読込・保存

3.9.1.設計データーを新規に作成する

最初に、設計データーを作成するシートを選択します。

次にメニューから[ファイル]-[二新規作成]を選択します。

設計データー新規作成画面が表示されるので、膜名と層数を入力し、OK ボタンを押します。

波長		nm			R,	T,A単位	>	
3 0 -	80 - 78 60 step	30 step 1 de	1 _{nm} eg, Ref=	詳細 500 nm	適用 9	6	<	
Sheet1	Sheet2 She	eet3 She	et4 Sheet5 Sh	neet6 Sheet	t7 Sheet8	Sheet9 Sh	e *	😈 設計データー新規作成
Center	500	0 <mark>::</mark> nm, /	Angle	0 📒 deg	I			層数
Substra	ate N-BK7(S	CHOTT)			~			
	Thickn	ess		n and k p	orofile			
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均質		膜名
1	0.2500	75.56	AI2O3	0.0000	0.0000			Sheet1
2	0.5000	121.97	ZrO2	0.0000	0.0000			
3	0.2500	90.27	MgF2	0.0000	0.0000			l
N 4 12	1							
Mediur	m I				×			
🗹 Ra	🗌 Rs 📃 I	Rp 🗌 Ta	a 🗆 Ts 📃	Тр 🗌	裏面			

シートに既存の設計データーがある場合は既存の設計データーは破棄され、既定の膜厚と膜物質が 設定された設計データーが作成されます。データーが無いシートの場合は、既定の膜厚と膜物質が設定 された設計データーが作成され、編集が可能になります。

3.9.2.ファイルから設計データーを読み込む

最初に、設計データーを読み込むシートを選択します。

次に、ツールバーのファイルを開く含をクリックするか、メニューから[含ファイル-開く]を選択します。 読み込みたい設計データーファイルを選択し、開くボタンを押します。

🔮 TFV						
77 4 V (E) 編集(<u>E</u>)	表示(⊻) シー	-ト選択(<u>S</u>) ツー	ル(<u>T)</u> ヘルプ(<u>H</u>)		
2 2	🗄 😡 🛂 30	$\mathfrak{M} \wedge^{\mathcal{C}} \rightleftharpoons \mathfrak{C}$	ւ 🍃 🖵 🕂 Օր	, ⁿ k 🎍		
波長		🕑 nm	~		✓ R, [*]	T,A単位
3	80 - 7	'80 step	1 _{nm}	詳細	適用 %	6
0 -	60 step) 1 de	eg, Ref=	500 nm	リセット	<
Sheet1	Sheet2 Sh	neet3 She	et4 Sheet5 S	heet6 Sheet	7 Sheet8 S	Sheet9 She
Center	50	0 🗄 nm, A	Angle	0 deg		
Substra	ate N-BK7(SCHOTT)	5		-	
	Thick	ness		n and k r	profile	
No.	nd/λ	nm	Material	dn	dk	不均質
1	0.2500	75.56	AI2O3	0.0000	0.0000	
2	0.5000	121.97	ZrO2	0.0000	0.0000	
3	0.2500	90.27	MgF2	0.0000	0.0000	
Mediur	m 1				~	
Ra		Rp Ta	a Ts [Tp	裏面	
] ODn	жщ	
- Frs		dEr Et	ts Etn]dFt ∰	状解除	
			is on p c		au (1111).	

5

Cancel

OK

3.9.3.ファイルへ設計データーを保存する

保存したい設計データーが表示されているシートを選択します。

次に、ツールバーの[¹ファイルを名前を付けて保存]をクリックするか、メニューから[ファイル]-[¹名 前を付けて保存]を選択します。

お好みのファイル名を付けて、保存ボタンを押します。

👿 TFV						×							
ファイルの	F) 編集(E) 表示(V) シー	-ト選択(<u>S) ツール</u>	(I) ヘルプ(H))									
📂 🖪 🕻	🗄 🚺 🔽 3D 🦢 🖓 🖿	. ⊳ 🖵 🕂 O _{Pt}	ⁿ k 🎍										
波長 3 0- Sheet1	80 - 780 step 60 step 1 de Sheet2 Sheet3 Shee	Inm eg, Ref= et4 Sheet5 Sh	<mark>詳細</mark> 500nm eet6 Sheet	<mark>適用</mark> R, 週 リセット 7 Sheet8 S	T,A単位 6 了 Sheet9 Sh	e	<mark>名前</mark> 保 _{最近}	<mark>を付けて保</mark> 存する場所型: し (使ったファイル	存 合 flm るSamples Sheet1.flm		•	⇐ 🗈 📸 🖬 ▾	2
Center	500] nm, A	Angle	0 📑 deg										
Substra	ate N-BK7(SCHOTT)			~			5	デスクトップ					
	Thickness		n and k p	orofile				1					
No.	<u>nd/λ</u> nm	Material	dn	dk	不均質		বন	(ドキュメント					
1	0.2500 75.56	AI2O3	0.0000	0.0000									
2	0.5000 121.97	ZrO2	0.0000	0.0000			বর্ণ	イコンピュータ					
3	0.2500 90.27	MgF2	0.0000	0.0000				<u>.</u>					
							ব	ネットリーク					
Mediu	m 1	. OT- O	T- 0	·					ファイル名(<u>N</u>): ファイルの種類(T):	Sheet1.flm 膜データーファイル(*.flm)	1	•	保存(S) キャンセル
🐸 Ra			ip U	表山									
🗆 Aa	🗌 As 🗌 Ap 🗌 O	Da 🗌 ODs 🗌	ODp										
🗆 Frs	Frp dFr Ft	s 🗌 Ftp 🗌	dFt 選	【択解除									

※ メニューから、[ファイル]-[計上書き保存]を選択すると上書き保存ができます。

3.9.4.設計データーをファイルに保存されている状態に戻す

膜厚や膜物質などをいろいろと変更した後に、元の状態(ファイルに保存されている状態)に戻したいと きがあります。

ツールバーの再読込 20 をフリックするか、メニューから[ファイル]-[2] 再読込]を選択すると、ファイルか ら設計データーを再読込し、簡単にファイルに保存されている状態に戻すことができます。

※ それまでに編集された内容は破棄されますので、注意してください。

😈 TFV											
ファイル	E) 編集(<u>E</u>)	表示(V) シー	-ト選択(<u>S</u>)	ツール	(I) ヘルプ(出))					
21	al 🖵 🔀 3	ם ^ע – א שע	. 🔈 W 🚽	• O _{pt}	ⁿ k 🎍						
波貝	•	∽ nm	~			✓ R	,T,A単位	>			
3	- 088	780 step	1	nm	詳細	適用	%				
0.	60 ste	o 1 de	eg, Ref=		500 _{nm}	リセット		<			
Sheet1 Sheet2 Sheet3 Sheet4 Sheet5 Sheet6 Sheet7 Sheet8 Sheet9 She*											
Center 500 nm, Angle 0 deg											
Substrate N-BK7(SCHOTT)											
	Thickness n and k profile										
No.	<u>nd/λ</u>	nm	Mater	ial	dn	dk	不均質	Î			
1	0.2500	75.56	Al2O3		0.0000	0.0000					
2	0.5000	121.97	ZrO2		0.0000	0.0000					
3	0.2500	90.27	MgF2		0.0000	0.0000					
Mediu	m 1					~					
🗹 Ra	🗆 Rs 🗌	Rp 🗆 Ta	a 🗌 Ts		Tp 🗌	裏面					
🗆 Aa	As C	Ap 🗆 O	Da 🗌 O[Ds 🗌	ODp						
🗆 Frs	🗆 Frp 🗌	dFr 🗆 Ft	s 🗌 Ftp		dFt 遅	【訳解除					

新バージョンで保存した設計データーファイルを、旧バージョンで読み込んでから保存すると、旧バージョン に存在しない機能に関する項目は削除されてしまいますのでご注意ください。

バー	ジョン毎の、	設計デー	ターファイ	イル(拡張子)	flm)に保存される	項目は以下の。	ようになります。
----	--------	------	-------	---------	------------	---------	----------

		TFV3.0 以降	TFV2.2
			TFV3.0 のファイルを TFV2.2
	光学膜厚	0	で読むと、TFV3.0 で優先に
Thiskness			設定されている側(タイトル
Thickness			にアンダーラインが表示され
	物理膜厚	0	ている側)の膜厚が読み込
			まれます。
	Material	0	0
n and k nuafila	dn	0	0
n and k profile	dk	0	0
	不均質	0	0
	Tooling	0	0
	dn	0	0
ち ギーン・トロール	dk	0	0
烝宿コノトロール	Filter(nm)	0	0
	Start	0	0
	MG	0	0
	On	0	0
	Min	0	0
最適化	Max	0	0
	単位	0	×単位は常に nm です。
	Needle	0	0
	On	0	×
	ΔΤ	0	×
	単位	0	×
製造誤差解析	Δn	0	×
	単位	0	×
	Δk	0	×
	単位	0	×
田告田	周期	0	0
同期間	倍率	0	0
	中心波長	0	0
	入射角	0	0
乙〇世	基板	0	0
ての他	入射媒質	0	0
	モニターガラス	0	0
	コメント	0	0

〇:保存される項目、×:保存されない項目

3.10. プロジェクトの保存・読込

メインウインドウの各シートに表示されている設計データーや表示されているウインドウの配置、グラフの書 式やユーザーライン等の現在の状態を「プロジェクト」としてファイルに保存し、保存した「プロジェクト」ファイル を読み込むとこれらの状態が復元されます。

	Ö	TFV						×
	ファ	<mark>イル(E)</mark> 編集(E) 表示(V)	シート選択(<u>(S)</u> ツール	T) ヘルプ(H)			
	設計	+データー		> O _{pt}	k 🎍			
		新規作成(N)	Ctrl+N			R	,T,A単位	>
	6	開く(<u>O</u>)	Ctrl+O	1nm	詳細	適用	%	
	a	再読込(B)			500 pm	リセット		
		最近使ったファイル	•				CL 10 C	4
	ы	上書き保存(<u>S</u>)	Ctrl+S	eet5 Sh	eet6 Sheet	7 Sheet8	Sheet9 S	ne
	N	名前を付けて保左(Δ)			0 🗄 deg			
1	プロ	ジェクト				~		
I	6	プロジェクトを開く(j)			n and k p	rofile		
I		最近使ったプロジェクト	•	erial	dn	dk	不均質	
I	ы	プロジェクトを上書き保存(e)		0.0000	0.0000		
I	81	名前を付けてプロジェクトを	保存(t)		0.0000	0.0000		
l		プロジェクトを閉じる(<u>C</u>)			0.0000	0.0000		
		インポート	•					
		エクスポート	•			× I		
	81	終了(X)		Ts 🗆 T	Гр 🗌	裏面		
		Aa 🗌 As 🗌 Ap 🛛	🗌 ODa 🗌	ODs 🗌 (DDp			
		Frs 🗌 Frp 🗌 dFr 🛛	Fts	Ftp 🗆 d	dFt 選	択解除		

3.10.1.プロジェクトの保存

プロジェクトを保存するには、メインウインドウのメニューから[ファイル] - [²¹名前を付けてプロジェクト を保存…]を選択します。

表示されるダイアログボックスで保存先フォルダーを選択しファイル名を入力して保存します。

W TFV	TestProj	ect.tfvproj)				_		×
ファイル(<u>E</u>) 編集(<u>E</u>	<u>)</u> 表示(<u>V</u>)	シート運	롭択(<u>S</u>) ツ	ール(<u>T)</u> ^	ヽルプ(<u>H</u>)			
🕑 🖻 🕻		ر × ⊴ 3D	r Im 🔈	w-+ () _{Pt} n _k 🤞	9			
波長		۱ 🔪	nm	~				R,T,A単位	>
38	30 -	780 st	ер	1 _{nm}	詳約	⊞	適用	%	
0 -	60 s	tep	1 deg,	Ref=	500 r	nm	リセット		<
Sheet1	Sheet2	Sheet3	Sheet4	Sheet5	Sheet6	Sheet	7 Sheet	8 Sheet9	She 1

タイトルバーに、 保存したプロジェクトファイル名が 表示されます。

※ メニューから、[ファイル] - [品プロジェクトを上書保存]を選択すると上書き保存ができます。

保存される内容

プロジェクトの保存では下記の内容が保存されます。

項目	保存される内容
設計データー	メインウインドウの各シートに表示されている設計データーのファイル名。
	※ 未保存の設計データーが存在する場合は保存を促すメッセージを表示します。
計算範囲	スペクトルの種類と単位、スペクトルの計算範囲
	入射角特性計算範囲
	角度特性および電場強度計算対象スペクトル。
R,T,A 単位	R,T,A 単位の選択状態。
計算種別の	メインウインドウの各シートで選択されている計算種別(Ra,Rs,Rp,TadFt,裏面)の
選択状態	選択状態。
シート数	メインウインドウに表示されているシート数。
メインウインドウ	メインウインドウの表示位置・サイズ。選択されているシート番号。
ユーザーライン	表示されているユーザーラインのファイル名、ラインの色・スタイル・線幅。

TFV ユーザーズガイド

	※ ユーザーライン表示可能なすべてのグラフが対象です。
	※ ファイルに保存されていないユーザーラインは対象外です。
分光光度計ライ ン	波長グラフに表示されている分光光度計ラインのファイル名、ラインの色・スタイル・ 線幅、絶対値変換の場合はリファレンス基板名。
グラフの書式	各グラフの表示/非表示状態、グラフの表示位置・サイズ、表示されている系列の 色・スタイル・線幅、軸の最大値・最小値・グリッド幅の設定状態、凡例の表示/非表 示状態・位置、波長入射角複合グラフの等高線設定。
	※ 書式設定可能なすべてのグラフが対象です。
電場強度グラフ	計算種別(平均(s,p), s)の選択状態。
色計算	視野、光源、色差計算の基準、グラフ種別、数値データー、の選択状態
製造誤差解析 グラフ	グラフ種別(波長グラフ・入射角グラフ・色計算)、計算種別(Ra, Rs)、変化種別(膜 厚変化・屈折率変化・吸収係数変化)の選択状態。
スタックウインド	スタックウインドウに表示されているシート数。
ウ	入射角、表面側の膜、基板、媒質、裏面側の膜、出射媒質、厚さ、計算種別の選択 状態。ウインドウの表示位置。
数値データーウイ ンドウ	数値データーウインドウの表示状態。

3.10.2.<u>プロジェクトの読込</u>

プロジェクトを読み込むには、メインウインドウのメニューから[ファイル] - [⁶プロジェクトを開く…]を選択します。

表示されるダイアログボックスでファイルを選択して読み込みます。

😈 TFV -	TestProj	ect.tfvproj						—		×
ファイル(E)	編集(E) 表示(<u>V</u>	シート運	選択(<u>S</u>)	ツール(I) ヘルプ(<u></u> 日)			
🕑 🖻 🕻	122	3D 💳 🗸	r In 🔈	w 🕂	O _{pt} N	(b				
波長		~ I	۱m	~					R,T,A単位	- >
38	30 -	780 st	ер	1 r	ım	詳細	適用		%	
0 -	60 st	tep	1 deg,	Ref=	5(00 _{nm}	リセッ			<
Sheet1	Sheet2	Sheet3	Sheet4	Sheet	5 Shee	et6 She	et7 She	et8	Sheet9	She [*]

タイトルバーに、 読み込んだプロジェクトファイル名が 表示されます。

復元される内容

プロジェクトの読込では下記の内容が復元されます。

項目	復元される内容
設計データー	メインウインドウの各シートに設計データーファイルを読み込んで表示します。
	読み込んだ設計データーに基づいて計算をおこないグラフに表示します。
	※ 設計データーそのものではなく設計データーのファイル名を保存しますので、設
	計データーを個別に保存した場合、プロジェクト保存時の設計データーではなく個別
	に保存した後の設計データーが読み込まれます。
	※ 設計データーファイルがプロジェクト保存時のフォルダーに存在しない場合、当
	該シートは設計データーが無い状態になります。
計算範囲	スペクトルの種類と単位、スペクトルの計算範囲
	入射角特性計算範囲
	角度特性および電場強度計算対象スペクトル
	をメインウインドウ上部の計算範囲欄に設定し、グラフに反映します。
R,T,A 単位	R,T,A 単位をグラフや数値データーウインドウに反映します。

TFV ユーザーズガイド

計算種別の	メインウインドウの各シートの計算種別(Ra,Rs,Rp,TadFt,裏面)の選択状態を復元
選択状態	し、グラフに反映します。
シート数	メインウインドウに表示するシート数を復元します。
メインウインドウ	メインウインドウの表示位置・サイズを復元します。一括保存時に選択されていたシ
	一トを選択状態にします。
ユーザーライン	表示されていたユーザーラインをユーザーラインファイルから読み込み、表示しま
	す。ラインの色・スタイル・線幅の状態を復元します。
	※ ユーザーラインのデーターではなくファイル名を保存しますので、一括保存後に
	ユーザーラインファイルの内容が変更された場合、変更後のユーザーラインが表示
	されます。ラインの色・スタイル・線幅は一括保存時の状態が復元されます。
	※ ユーザーラインファイルがー括保存時のフォルダーに存在しない場合、当該ユー
	ザーラインは復元されません。
分光光度計ライ	波長グラフに表示されていた分光光度計ラインをファイルから読み込み、表示しま
ン	す。ラインの色・スタイル・線幅の状態を復元します。絶対反射変換の状態も復元し
	ます。
	※ 分光光度計ラインのデーターではなくファイル名を保存しますので、一括保存後
	に分光光度計ファイルの内容が変更された場合、変更後の分光光度計ラインが表
	示されます。ラインの色・スタイル・線幅は一括保存時の状態が復元されます。絶対
	反射変換は、一括保存後に分散データーファイルの内容が変更されていた場合、変
	更後の分散データーファイルの内容を用いて絶対反射変換がおこなわれます。
	※ 分光光度計ファイルが一括保存時のフォルダーに存在しない場合、当該分光光
	度計ラインは復元されません。
グラフの書式	各グラフの表示/非表示状態、グラフの表示位置・サイズ、表示されている系列の
	色・スタイル・線幅、軸の最大値・最小値・グリッド幅の設定状態、凡例の表示/非表
	示状態・位置、波長入射角複合グラフの等高線設定を復元します。
	※ 書式設定可能なすべてのグラフが対象です。
電場強度グラフ	計算種別(平均(s,p), s)の選択状態を復元し、グラフに反映します。
色計算	朝野、光源、色差計算の基準、グラフ種別、数値データー、の選択状態を復元し、グ
	ラフと表に反映します。
製造誤差解析	ダラフ種別(波長グラフ・入射角グラフ・色計算)、計算種別(Ra, Rs)、変化種別(膜
グラフ	厚変化・屈折率変化・吸収係数変化)の選択状態、試行回数を復元します。
スタックウインド	スタックウインドウに表示するシート数を復元します。
ウ	入射角、表面側の膜、基板、媒質、裏面側の膜、出射媒質、厚さ、計算種別の選択
	状態を復元しグラフに反映します。
	ウインドウの表示位置を復元します。
数値データーウイ	数値データーウインドウの表示状態を復元します。
ンドウ	

メインウインドウのメニューから[ファイル] - [プロジェクトを閉じる]を選択すると、現在のプロジェクトの 内容が破棄され画面が初期状態に戻ります。メインウインドウ以外のウインドウは閉じ、メインウインドウ 内の設計データーはすべてクリアされます。

タイトルバーのプロジェクトファイル 名が消え、設計データーが無い状態になります。

3.10.4. 最近使ったプロジェクト

メインウインドウのメニューから[ファイル] - [最近使ったプロジェクト]を選択すると、直近に使用した 20 個までのプロジェクトのリストが表示されます。

リストの中からプロジェクトファイル名を選択するとプロジェクトを開くことができます。 また、リスト下部の[クリア]を選択すると最近使ったプロジェクトの履歴が消去され、リストに表示され なくなります。

3.11. 基板や膜の n, k を計算

分光反射率や分光透過率の測定値から基板や膜のn,kを計算する機能です。

メインウインドウのメニューから、[ツール] - [¹k基板や単層膜の nk 解析]を選択すると次のような画面 が表示されます。

● 分光光度計測定値から光学定数を計算		×
基板の光学定数		
吸収がない基板の屈折率(n)を計算●		
吸収がある基板の屈折率(n)、吸収係数(k)、内部透過率(Ti)を言	†算 ♀]
薄膜の光学定数		
単層膜のnk解析●		
反射率や透過率から、分散式へのカーブフィッティングにより 膜のn, kおよび膜厚(d)を解析します。		
単層金属薄膜のnk計算。		
表面反射率と裏面反射率から、金属膜のn, kを計算します。 透過率が0であることが必要です。		
	閉じる	3

3.11.1.吸収がない基板の屈折率(n)を計算

膜が付いていない基板の屈折率を計算します。 基板に吸収が無い場合に使用します。 片面マット基板または両面研磨基板が必要です。

[ツール] - [¹k基板や単層膜の nk 解析] - [吸収がない基板の屈折率(n)を計算]

(1) 測定条件の設定

🖲 吸収がない基板の屈折率(n)を計算 – 🛛 🔿	<
測定条件	
測定方法を選択してください	
●片面反射率から計算	
○両面反射率から計算	
○透過率から計算	
入射角 (deg.) 偏光	
0 学 平均	
※ 次の場合、正しい屈折率は得られません。 基板に吸収がある場合(透過率から計算する場合は特に誤差が大きくなります)。 基板が薄く、多重反射ではなく干渉してしまう場合。 測定値が正確でない場合。 非偏光で入射角が大きい場合(約70度以上)は解が定まりません。	2
●戻る(B) 次へ(N)● Cancel	

片面の分光反射率、両面の分光反射率、透過率の3種類の中から測定方法を選択します。 入射角を入力し、偏光(s偏光、p偏光、平均)を選択します。

[次へ]を押します。

(2) 測定値の入力

😈 吸収がない基板の屈折	率(n)を計算		– 🗆 X
	基板の片面	反射率 測定デ−タ−	
基板の片	面反射率	4.6	
波長(nm)	R(%)	45	— 基板の片面反射率
• 320	4.604726404	4.5	
321	4.601008877	4.4	
322	4.597332533	4.2	
323	4.593696728	(%)	
324	4.590100833	a 4.2	
325	4.586544233	41	
326	4.583026324	4.1	
327	4.579546512	4.0	
328	4.576104218	2.0	
329	4.572698874	5.9	
 クリア 📄 コピー 🚺 貼付	▲ 5 6 0 2 2 0 0 2 ×	500 100	1500 2000 波長(nm)
		◎戻る(B)	次へ(<u>N</u>) ^② <u>C</u> ancel

[ご分光光度計データー] を押して分光光度計測定データーファイルから読み込むか、測定値を 表に直接入力します。貼り付けボタンで Excel などから測定値を貼り付けることもできます。

[次へ]を押します。

(3) 分散式の選択

🦉 吸収がない基板の屈折率(n)を計算			—		×
	分散式と範囲の設定				
分散式:					
n General1 -	$n(\lambda) = \sqrt{-A_0 + A_1 \lambda^2 + \frac{A_0}{\lambda^2} + \frac{A_0}{\lambda^4} + \frac{A_0}{\lambda^6} + \frac{A_0}{\lambda^6} + \frac{A_0}{\lambda^6} + A_0 \lambda^4}$				
	高度な設定 クリア				
波長 320 🛁 -	2300 i nm				
●既定値に戻す					
分散式一覧表示		◎戻る(B)	次へ(N)♀	Ca	ncel

分散式と計算する波長範囲を選択します。

[高度な設定]を押すと分散式のパラメーターの初期値を設定できます。 波長範囲が広すぎて分散式へのフィッティングがうまくいかない場合は波長範囲を狭くするか、分 散式の欄で直線補間(Table)を選択してください。

[次へ]を押します。

(4) 計算

[実行]ボタンを押すと基板の n を計算します。

上のグラフの実線は測定値から計算した n、点線は測定値から計算した n を分散式にフィッティングした結果です。

下のグラフは手順2で入力した測定値です。

Merit は、測定値から計算した n(実線)とフィッティング結果の n(点線)との差から計算した Merit 関数の値です。数字が小さければ小さいほど良くフィッティングされています。 その下に分散式のパラメーターが表示されます。

フィッティングがうまくいかない場合は、手順3で、別の分散式を選択するか直線補間(Table)を 選択して計算してみてください。

[保存]を押すと、基板データー(Substrate)として保存できます。

3.11.2.吸収がある基板の屈折率(n)、吸収係数(k)、内部透過率(Ti)を計算

膜が付いていない基板の屈折率を計算します。 基板に吸収がある場合に使用します。 片面マット基板と両面研磨基板の両方が必要です。

[ツール] - [^{**n**}k基板や単層膜の nk 解析] - [吸収がある基板の屈折率(n)、吸収係数(k)、内部透過率 (Ti)を計算]

(1) 基板情報の入力

🤨 吸収がある基板の屈折率(n)、吸収係数(k)、内部透過率(Ti)を計算 —		×
基板情報		
基板の反射率または透過率から基板のn, k, Tiを計算します。 片面マット基板と、両面研磨基板の測定値が必要です。 両面研磨基板の厚さを入力してください。		
基板の厚さ 1 <mark>…</mark> mm		
○戻る(B) 次へ(N)○	Car	ncel

基板の厚さを入力します。

[次へ]を押します。

(2) 測定条件の設定

「片面反射率と両面反射率から計算」、「片面反射率と両面透過率から計算」のどちらの測定方法を使うかを選択します。

垂直入射のみ対応しています。斜入射の測定には対応していません(解が定まらないため)。必要 な n,k の精度にもよりますが 5°入射や 12°入射の測定値を垂直入射として代用できる場合が 多いかと思います。

[次へ]を押します。

(3) 測定値の入力

Ø	吸収がある基板の屈持	所率(n)、吸収係数(k)、内音	◎透過率(Ti)を計算 - □ ×	🤨 吸収がある基板の屈折	所率(n)、吸収係数(k)、内部	3透過率(Ti)を計算	– 🗆 X
		基板の片面	〕反射率 測定データー		基板の両面合	計反射率 測定データ	-
3	分光光度計データー			🤔 分光光度計データー			
	基板の片	面反射率	8.5	基板の両面	合計反射率	8.5	
	波長(nm)	R(%) ^	80	波長(nm)	R(%) ^		
	320	4.604726404	8.0	· 320	8.589746627	0.0	
	321	4.601008877	7.5 — 基板の片面反射率	321	8.593053426	7.5	 基板の片面反射率
	322	4.597332533	7.0	322	8.59632107	7.0	 基板の両面合計反射率
	323	4.593696728	8.6.5	323	8.59955101	8.6.5	
	324	4.590100833	R,TC	324	8.602744637	L'A CO	
	325	4.586544233	6.0	325	8.605903276	6.0	
	326	4.583026324	5.5	326	8.609028196	5.5	
	327	4.579546512	5.0	327	8.612120611	5.0	
	328	4.576104218	45	328	8.615181683	45	
	329	4.572698874		329	8.618212523	1.5	
	330	4.56932992 ~	400 500 600 700 800 900 10	330	8.621214194 ~	400 50	0 600 700 800 900 100
	クリア 🛅 コピー 门 貼	付 🚰 挿入 📑 削除	波長(nm)	📄 クリア 📄 コピー 门 貼	付→●挿入→削除		波長(nm)
			●戻る(B) 次へ(N)● Cancel			◎戻る(<u>B</u>)	次へ(N)♀ Cancel

[ご分光光度計データー]を押して分光光度計測定データーファイルから読み込むか、測定値を 表に直接入力します。貼り付けボタンで Excel などから測定値を貼り付けることもできます。

[次へ]を押します。

(4) 分散式と計算範囲の選択

🟮 吸収がある基板の屈折率(n)、吸収係数(k)、内部透過率(Ti)を計算 – 🗆 🗙
分散式と範囲の設定
分散式 :
n Sellmeier $n(\lambda) = \sqrt{1 + \frac{A_0\lambda^2}{\lambda^2 - A_3} + \frac{A_1\lambda^2}{\lambda^2 - A_4} + \frac{A_2\lambda^2}{\lambda^2 - A_5}}$
k Sellmeier $k(\lambda) = \left[n(\lambda) \cdot \left(B_{\beta}\lambda + \frac{B_1}{\lambda} + \frac{B_2}{\lambda^3}\right)\right]^{-1}$
高度な設定 クリア
波長 320.0 - 1000.0 nm
●既定値に戻す
分散式一覧表示 ○戻る(B) 次へ(N)○ Cancel

分散式と計算する波長範囲を選択します。

[高度な設定]を押すと分散式のパラメーターの初期値を設定できます。 波長範囲が広すぎて分散式へのフィッティングがうまくいかない場合は波長範囲を狭くするか、分 散式の欄で直線補間(Table)を選択してください。

[次へ]を押します。

(5) 計算

[実行]ボタンを押すと基板の n,k,Ti を計算します。

上のグラフは測定値から計算した n,k(実線)と、それらを分散式にフィッティングした結果(点線)です。

下のグラフは手順3で入力した測定値と内部透過率の計算結果です。 内部透過率は分散式への当てはめはおこないません。測定値から直に計算した値なので測定値 のノイズが乗っています。画面下部にスムージングするかどうかとスムージングレベルを設定する 欄がありますので必要に応じてスムージングしてください。

Merit は、測定値から計算した n,k(実線)とフィッティング結果の n,k(点線)との差から計算した Merit 関数の値です。数字が小さければ小さいほど良くフィッティングされています。 その下に分散式のパラメーターが表示されます。

フィッティングがうまくいかない場合は、手順4で、別の分散式を選択するか直線補間(Table)を 選択して計算してみてください。

[保存]を押すと、基板データー(Substrate)として保存できます。

3.11.3.単層膜の nk 解析

分光反射率や分光透過率から、分散式へのカーブフィッティングにより膜の n, k および膜厚(d)を解析します。

[ツール] - [^{II}k基板や単層膜の nk 解析] – [単層膜の nk 解析]

(1) 基板情報の入力

🔞 単層膜のnk解析			×
基板情報			
(1) 基板 Quartz			
 表面 (2) 裏面 単層膜 □ □-ト無し研磨面 □ 吸収膜の解析には「□-ト無し研磨面」が必 (3) 基板の厚さ 1 mm 基板に吸収がある場合のみ必要です。 	、要です。		
◎戻る(B)	次へ(№)♀	Ca	ncel

基板

基板の種類を選択します。Quartz(合成石英)を推奨します。

裏面

裏面の状態を選択します。 「コート無し研磨面」と「無反射面(墨塗り・マット面等)」のどちらかを選択してください。

基板の厚さ

基板の厚さを入力します。基板に吸収がある場合にだけ必要です。 基板に吸収が無い場合は無視されます。

[次へ]を押します。

(2) 測定条件の設定

🧕 単層膜のnk解析									×
			測定条件	=					
測定方法を選択し	測定方法を選択してください								
☑ 表面反射率☑ 裏面反射率□ 透過率	入射角 (deg.) 0 0 0 0 0	偏光 平均 平均 平均	~ ~						
吸収膜の解析には 吸収が無い膜の場 分光特性の山か名 ※ 次の場合、正し	吸収膜の解析には、2種類以上の方法での測定が必要です。 吸収が無い膜の場合は1種類のみ選択してください。 分光特性の山か谷が1つ以上あると解析しやすいです。 ※次の場合、正しいnkは得られません。								
基板か薄く、多重、 測定値が正確でな 吸収がある基板で	反射ではなく十渉し い場合。 基板の厚さが正確で	でない場	合。						
				◎戻る(<u>B</u>)		次へ()	<u>N</u>) 🛛	<u>C</u> a	ncel

測定の種類と、入射角、偏光の種類を選択・入力します。

吸収係数 k を解析するには、両面透明基板を使用し、「表面反射率」・「裏面反射率」・「透過率」のうち最低 2 種類の測定が必要です。

[次へ]を押します。

(3) 測定値の入力

[≧分光光度計データー] を押して分光光度計測定データーファイルから読み込むか、測定値を 表に直接入力します。貼り付けボタンで Excel などから測定値を貼り付けることもできます。

[次へ]を押します。

(4) 分散式と解析範囲の選択

■ 単層膜のnk解析	×
分散式と範囲の設定	
分散式 :	
n Cauchy アンジョン $n(\lambda) = A_0 + \frac{A_1}{\lambda^2} + \frac{A_2}{\lambda^4}$	
k Sellmeier マント 不均質なし マン $k(\lambda) = \left[n(\lambda) \cdot \left(B_0 \lambda + \frac{B_1}{\lambda} + \frac{B_2}{\lambda^3}\right)\right]^{-1}$	
□ 正常分散のみ解析 高度な設定 クリア	
解析範囲 最小 最大	
膜厚 100 1000 Å	
□膜厚固定	
最小 最大	
n 1 10	
k 0 10	
波長 350.0 - 780.0 - nm	
使用データー点数: 1 点毎 ●既定値に戻す	
→ 散式 一覧表示 ○戻る(B) 次へ(N) ○	Cancel

分散式・解析範囲・使用データー点数を設定します。

nとkの不均質を解析するかどうかもここで選択します。

[正常分散のみ解析]にチェックを入れると、正常分散(波長が短くなればなるほど屈折率が大き くなる分散)のみ解析します。チェックを外すと異常分散も含めて解析します。

[高度な設定]を押すと分散式のパラメーターの初期値を設定できます。

波長範囲が広すぎて分散式へのフィッティングがうまくいかない場合は波長範囲を狭くしてくだ さい。 [次へ]を押します。

(5) 解析

[実行]ボタンを押すと解析が始まります。

上のグラフは、n,kの解析結果です。

下のグラフは、手順3で入力した測定値(実線)と、n,kの解析結果から計算した反射率・透過率(点線)です。

Merit は、測定値(実線)と、n,kの解析結果から計算した反射率・透過率(点線)との差から計算 した Merit 関数の値です。数字が小さければ小さいほど良くフィッティングされています。

膜厚は、膜厚の解析結果です。

その下に分散式のパラメーターが表示されます。

Merit が小さかったとしても膜厚がズレていることがありますので、もっともらしい膜厚かどうか 注意してご確認ください。

フィッティングがうまくいかない場合は、手順4で、別の分散式を選択するか波長範囲を狭くし てみてください。

[保存]を押すと、膜物質データー(Material)として保存できます。

※ 単層膜の nk 解析は、分散式へのカーブフィッティングにより膜の n,k および膜厚(d)を推定す るものです。出てきた解が正しいかどうか、分光特性・n,k の値・膜厚を見てご確認ください。ま た、次項の「単層膜の nk 解析の注意点」もご参照ください。

3.11.3.1.単層膜の nk 解析の注意点

単層膜の分光特性測定値から膜のnとkを解析する場合の注意点について説明します。 膜のnとkの解析は、測定精度・基板の選択・波長範囲などにより、解析の可否が左右されます。また、不均質がある場合や分散カーブが分散式で表現できない場合などは解析が困難です。

● 基板

基板の屈折率データーが正確であることが重要です。

基板の屈折率データーが不正確だと正しく解析できません。

また、基板の表面に汚れやヤケがある場合も正しく解析できません。

解析に用いる基板としては、吸収が無く、屈折率が既知で化学的にも安定している合成石英基板を推 奨します。ただし例えば石英基板上に SiO2 薄膜を成膜しても屈折率がほぼ同じため解析できません。 薄膜とは屈折率が異なる基板を用いてください。

● 膜厚

膜厚が薄すぎたり厚すぎたりすると正しく解析できない場合があります。 分光特性にピークか谷が1つ以上あるほうが正しい解に到達しやすい場合が多いです。

測定

測定値(反射率・透過率)が正確であることが重要です。

極端な例では、透過と反射を足して 100 を超えたりλ/2 厚で基板反射を下回ったりするような理論上 あり得ない測定値の場合は解がないため解析できません。

例えば透過率の測定が不正確な場合は、解析に表面反射・裏面反射・透過率の3種類の測定値を 使わずに表面反射・裏面反射の2種類だけで解析をした方がうまく解析できる場合があります。 吸収が無い膜の場合は表面反射または透過率どちらか1つのみの測定で十分です。

● 波長範囲

波長範囲が広すぎると1つの分散式で分散カーブを表現できないためうまく解析できない場合があり ます。そのような時は波長範囲を分けて解析してみてください。場合によっては波長範囲毎に分散式を 変えてみてください。

最後に分散式から各波長のnとkを計算し、全波長域のデーターを直線補間(Table)形式で登録して ください。

分散式の選択

パラメーターが多い分散式は解が無数に存在しうまく解析できない場合があります。 可視範囲の例として、ITO 膜の場合、n の分散式:Cauchy・k の分散式:Sellmeier、 Si 膜の場合、n の分散式:Cauchy または Sellmeier・k の分散式:QUADSK または Sellmeier、 を使うとうまく解析できた例があります。

また、吸収がゼロなのに k の分散式を指定して解析するとうまく解析できない場合があります。

3.11.4.<u>単層金属薄膜の nk 計算</u>

表面反射率と裏面反射率から金属膜の nk を計算します。 膜が十分に厚く、透過率が 0 であることが必要です。

[ツール] - [^{**ル**}基板や単層膜の nk 解析] – [単層金属薄膜の nk 計算]

(1) 基板情報の入力

● 単層金属薄膜のnk計算			×
基板情報			
基板			
Quartz			
表面 裏面 金属膜 → コート無し研磨面 → 基板の厚さ 1000 1000 mm 基板の厚さは 基板に吸収がある場合のみ必要です			
奉敬の厚さは、奉敬に吸収がある場合のみ必要です。 吸収が無い基板の使用を推奨します。			
●戻る(B) 次へ(N)0	Car	ncel

基板

基板の種類を選択します。Quartz(合成石英)を推奨します。

基板の厚さ

基板の厚さを入力します。基板に吸収がある場合にだけ必要です。 基板に吸収が無い場合は無視されます。

[次へ]を押します。

(2) 測定条件の設定

🤨 単層金属薄膜のnk計算	—		×
測定条件			
基板上に成膜された単層金属薄膜の表面反射率と裏面反射率から、金属膜 ※注意: 透過率が0であることが必要です。	ወn, kを	計算し	ます。
入射角 (deg.) 偏光			
0 平均			
吸収が無い基板かつ垂直入射に近い入射角での使用を推奨します。			
※ 次の場合、正しいnkは得られません。			
基板の吸収が大きい場合。			
人別用か大さい場合。 時度が薄く 米が透過してしまう場合			
基板が薄く、多重反射ではなく干渉してしまう場合。			
測定値が正確でない場合。			
吸収がある基板で基板の厚さが正確でない場合。			
●戻る(B) 次へ	(<u>N</u>) o	Ca	ncel

入射角を入力し、偏光(s 偏光、p 偏光、平均)を選択します。 垂直入射あるいはそれに近い入射角での測定を推奨します。

[次へ]を押します。

(3) 測定値の入力

[ご分光光度計データー]を押して分光光度計測定データーファイルから読み込むか、測定値を 表に直接入力します。貼り付けボタンで Excel などから測定値を貼り付けることもできます。

[次へ]を押します。

(4) 分散式と計算範囲の選択

● 単層金属薄膜のnk計算 ー		
分散式と範囲の設定		
分散式:		
n 直線補間(Table)		
k 直線補間(Table)		
波長 380.0 - 780.0 - nm		
の既定値に更す		
分散式一覧表示 ●戻る(B) 次へ(N)●	Ca	ncel

分散式と計算する波長範囲を選択します。

金属薄膜の nk 計算では、分散式の欄に直線補間(Table)が初期値として選択されていますが、 分散式を選択することもできます。

[高度な設定]を押すと分散式のパラメーターの初期値を設定できます。 波長範囲が広すぎて分散式へのフィッティングがうまくいかない場合は波長範囲を狭くするか、分 散式の欄で直線補間(Table)を選択してください。

[次へ]を押します。

(5) 計算

[実行]ボタンを押すと金属薄膜の n,k を計算します。

上のグラフは測定値から計算した n,k(実線)と、それらを分散式にフィッティングした結果(点線)です。直線補間(Table)の場合はフィッティングした結果はありません。

直線補間(Table)の場合、測定値のノイズが乗っているので、必要に応じて画面下部の[n,k をス ムージング]にチェックを入れてスムージングレベルを調整してください。

下のグラフは手順3で入力した測定値です。

Merit は、測定値から計算した n,k(実線)とフィッティング結果の nk(点線)との差から計算した Merit 関数の値です。数字が小さければ小さいほど良くフィッティングされています。 その下に分散式のパラメーターが表示されます。 直線補間(Table)の場合は、Merit と分散式のパラメーターは表示されません。

分散式を選択した場合でフィッティングがうまくいかない時は、手順4で、別の分散式を選択する か直線補間(Table)を選択して計算してみてください。

[保存]を押すと、膜物質データー(Material)として保存できます。

3.12. その他の機能

3.12.1.分散データーの作成・編集

ユーザー定義の分散データーを作成したり編集したりするには、メニューから[ツール-か分散データー 編集…]を選択します。または、メインウインドウで基板や膜物質欄にマウスをかざしたときに表示される ポップアップウインドウの「編集」ボタンを押します。

🦉 分散データー編集		– o x	
新規作成 * 名前変更	🕒 Jビー 🗙 削除 Substrate一覧表示 Material一覧表示 分散式一覧表	長示	
) 新州代成。 Glass Film Material	Substate-覧表示 Material-覧表示 分散式-ワーター名: 備考 タイトル: コメント: 有効範囲(nm): ・ ~ 分散の種類 ○ 直線補間(Table) ○ 分散式 n: k 次長 (nm) n ・	E示 「レビュー 備考欄 今散の種類の選択 ト ト ト ト ト ト ト 「 小 い で 小 の た 日 い で 、 、 、 、 、 、 、 、 、 、 、 、 、	- データー入力
	クリア・コピー () 粘付 子挿入 子 削除 ノ 涼田 の リナット 分散式の波長の単	位はumです(Foroubi-Bloomerを除く)。 問じる	

• 既存データーの編集

既存データーを編集するには、画面左側のリストから選択します。

• 新規作成

新たに分散データーを作成するには、[■新規]を押します。 次に、種類(基板か膜物質か)を選び、ファイル名を入力し、[OK]をクリ ックします。

分散データーの新規	作成
○ 基板(Glass)	⊛ 膜物質(Material)
分散データーの 名育	ή
ОК	Cancel

• 項目の説明

【備考欄】

分散データーのタイトル・コメント・有効波長範囲を入力します。

※ 分散式を使用する場合、有効範囲を必ず入力してください。有効範囲によって計算結果に違いが 出る場合があります。詳細は、「3.13.1.3 光学定数」を参照してください。

【分散の種類の選択】

分散データーの種類を選択します。

直線補間および各種分散式のうち、どれを使用するかを選択します。

【データー入力欄】

直線補間を選択した場合は、波長・n(屈折率)・k(吸収係数)を入力します。

分散式を選択した場合は、分散式の係数を入力します。

また、基板の場合は内部透過率も入力することができます。内部透過率については、「3.6.12 基板・ 媒質の内部透過率」を参照してください。

直線補間の場合は、表計算ソフトなどからクリップボード経由でデーターを貼り付けることができます。 表計算ソフトなどでコピーしたデーターを貼り付けるには貼付ボタン ^{11 貼付}を押します。行を追加した り削除したりするには、下部にある、行挿入・行削除ボタンを使用します。
屈折率 n および吸収係数 k の分散には、波長毎のデーター点テーブル(直線補間)、または以下 の各分散式が使用できます。

いずれも、ガラスデーター(基板・入射媒質)と、膜物質データーの両方で使用できます。

[屈折率 n	の分散式]
--------	-------

名前	分散式
Sellmeier	$n(\lambda) = \sqrt{1 + \frac{A_0 \lambda^2}{\lambda^2 - A_3} + \frac{A_1 \lambda^2}{\lambda^2 - A_4} + \frac{A_2 \lambda^2}{\lambda^2 - A_5}}$
Sellmeier2	$n(\lambda) = \sqrt{1 + A_0 + \frac{A_1 \lambda^2}{\lambda^2 - A_3^2} + \frac{A_2}{\lambda^2 - A_4^2}}$
	※ A ₂ にλ ² は付きません。
Sellmeier3	$n(\lambda) = \sqrt{1 + \frac{A_0\lambda^2}{\lambda^2 - A_4} + \frac{A_1\lambda^2}{\lambda^2 - A_5} + \frac{A_2\lambda^2}{\lambda^2 - A_6} + \frac{A_3\lambda^2}{\lambda^2 - A_7}}$
Sellmeier4	$n(\lambda) = \sqrt{A_0 + \frac{A_1 \lambda^2}{\lambda^2 - A_3} + \frac{A_2 \lambda^2}{\lambda^2 - A_4}}$
Sellmeier5	$n(\lambda) = \sqrt{1 + \frac{A_0\lambda^2}{\lambda^2 - A_5} + \frac{A_1\lambda^2}{\lambda^2 - A_6} + \frac{A_2\lambda^2}{\lambda^2 - A_7} + \frac{A_3\lambda^2}{\lambda^2 - A_8} + \frac{A_4\lambda^2}{\lambda^2 - A_9}}$
SellmeierT1	$n(\lambda) = \sqrt{A_0 + \frac{A_1 \lambda^2}{\lambda^2 - A_2}}$
SellmeierT2	$n(\lambda) = \sqrt{A_0 + \frac{A_1\lambda^2}{\lambda^2 - A_2} + A_3\lambda^2}$
SellmeierX1	$n(\lambda) = \sqrt{1 + \frac{A_0 \lambda^2}{\lambda^2 - A_3^2} + \frac{A_1 \lambda^2}{\lambda^2 - A_4^2} + \frac{A_2 \lambda^2}{\lambda^2 - A_5^2}}$
General1	$n(\lambda) = \sqrt{A_0 + A_1\lambda^2 + \frac{A_2}{\lambda^2} + \frac{A_3}{\lambda^4} + \frac{A_4}{\lambda^6} + \frac{A_5}{\lambda^8} + A_6\lambda^4}$
General2 (Old Schott)	$n(\lambda) = \sqrt{A_0 + A_1 \lambda^2 + \frac{A_2}{\lambda^2} + \frac{A_3}{\lambda^4} + \frac{A_4}{\lambda^6} + \frac{A_5}{\lambda^8}}$
Cauchy	$n(\lambda) = A_0 + \frac{A_1}{\lambda^2} + \frac{A_2}{\lambda^4}$
Hartmann1	$n(\lambda) = A_0 + \frac{A_1}{\lambda - A_2}$
Hartmann2	$n(\lambda) = A_0 + \frac{A_1}{(\lambda - A_2)^2}$

Herzberger	$n(\lambda) = A_0 + A_1 \lambda^2 + \frac{A_2}{(\lambda^2 - 0.168^2)} + \frac{A_3}{(\lambda^2 - 0.168^2)^2}$		
Herzberger2	$n(\lambda) = A_0 + \frac{A_1}{(\lambda^2 - 0.028)} + \frac{A_2}{(\lambda^2 - 0.028)^2} + A_3\lambda^2 + A_4\lambda^4 + A_5\lambda^6$		
QUAD	$n(\lambda) = A_0 + \frac{A_1}{\lambda^2}$		
QUADSK	$n(\lambda) = A_0 + A_1 \lambda + A_2 \lambda^2$		
Conrady	$n(\lambda) = A_0 + \frac{A_1}{\lambda} + \frac{A_2}{\lambda^{3.5}}$		
Handbook1 (Handbook of Optics)	$n(\lambda) = \sqrt{A_0 + \frac{A_1}{(\lambda^2 - A_2)} - A_3 \lambda^2}$		
Handbook2 (Handbook of Optics)	$n(\lambda) = \sqrt{A_0 + \frac{A_1 \lambda^2}{(\lambda^2 - A_2)} - A_3 \lambda^2}$		
Extended (ZEMAX)	$n(\lambda) = \sqrt{A_0 + A_1 \lambda^2 + \frac{A_2}{\lambda^2} + \frac{A_3}{\lambda^4} + \frac{A_4}{\lambda^6} + \frac{A_5}{\lambda^8} + \frac{A_6}{\lambda^{10}} + \frac{A_7}{\lambda^{12}}}$		
Extended2 (ZEMAX)	$n(\lambda) = \sqrt{A_0 + A_1\lambda^2 + \frac{A_2}{\lambda^2} + \frac{A_3}{\lambda^4} + \frac{A_4}{\lambda^6} + \frac{A_5}{\lambda^8} + A_6\lambda^4 + A_7\lambda^6}$		
Extended3 (ZEMAX)	$n(\lambda) = \sqrt{A_0 + A_1\lambda^2 + A_2\lambda^4 + \frac{A_3}{\lambda^2} + \frac{A_4}{\lambda^4} + \frac{A_5}{\lambda^6} + \frac{A_6}{\lambda^8} + \frac{A_7}{\lambda^{10}} + \frac{A_8}{\lambda^{12}}}$		
Buchdahl	$n(\lambda) = A_0 + A_1 \omega(\lambda) + A_2 \omega(\lambda)^2, \omega(\lambda) = \frac{\lambda - A_3}{1 + 2.5(\lambda - A_3)}$		
DRUDE	$n^{2}(\lambda) - k^{2}(\lambda) = A_{0} - \frac{A_{1}A_{2}^{2}\lambda^{2}}{\lambda^{2} + A_{2}^{2}}$		
LorentzianK	$n(\lambda) = \sqrt{A_0 + k(\lambda)^2 + A_1 \lambda^2 \frac{(\lambda^2 - A_2^2)}{(\lambda^2 - A_2^2)^2 + A_3^2 \lambda^2}}$		
Forouhi- Bloomer	$n(E) = n(\infty) + \frac{B_0 E + C_0}{E^2 - BE + C}$ $B_0 = \frac{A}{Q} \left(\frac{-B^2}{2} + E_g B - E_g^2 + C \right), C_0 = \frac{A}{Q} \left((E_g^2 + C) \frac{B}{2} - 2E_g C \right),$ $Q = \frac{1}{2} (4C - B^2)^{\frac{1}{2}}, E = \frac{hc}{\lambda}$		
h: フランク定数, c: 光速, E の単位は eV A ₀ ,A ₁ ,A ₂ ,A ₃ ,A ₄ ,A ₅ ,A ₆ ,A ₇ ,A ₈ ,A ₉ は物質により定まる定数。			

 λ の単位は μ m。(Forouhi-Bloomer を除く)。

[吸収係数 k の分散式]

名前	分散式
Sellmeier	$k(\lambda) = \left[n(\lambda) \cdot \left(B_0 \lambda + \frac{B_1}{\lambda} + \frac{B_2}{\lambda^3} \right) \right]^{-1}$
Cauchy	$k(\lambda) = B_0 + \frac{B_1}{\lambda^2} + \frac{B_2}{\lambda^4}$
Exponential	$k(\lambda) = B_0 \exp(B_1 \lambda^{-1})$
QUADSK	$k(\lambda) = B_0 + B_1 \lambda + B_2 \lambda^2$
DRUDE	$2n(\lambda)k(\lambda) = \frac{A_1 A_2 \lambda^3}{\lambda^2 + A_2^2}$
LorentzianK	$k(\lambda) = \sqrt{\frac{0.5}{n(\lambda)} \times \frac{A_1 A_3 \lambda^3}{(\lambda^2 - A_2^2)^2 + A_3^2 \lambda^2}}$
Forouhi- Bloomer	$k(E) = rac{A(E - E_g)^2}{E^2 - BE + C}$ $E = rac{hc}{\lambda}$ h: プランク定数, c: 光速, E の単位は eV

B₀,B₁,B₂は物質により定まる定数。

 λ の単位は μ m。(Forouhi-Bloomer を除く)。

ユーザー定義の不均質データーを作成したり編集したりするには、メニューから[ツール-ーター編集…]を選択します。または、メインウインドウで不均質欄にマウスをかざしたときに表示される ポップアップウインドウの「編集」ボタンを押します。

😈 不均質データー編集	. —		
🗋 新規作成 🌻	』名前変更 🛃 コピー ≻ 削除		
Minus-1 Minus-2 Plus-1 Plus-2	不均質データー名: Minus-1 備考 タイトル: タイトル: Minus-1 コメント: MinusSample1 不均質パラメーター n増減量: ・0.005 100 本 、毎 ・ 第 ・ 100 本 、毎		} 備考欄 データー入力欄
	Kite Material: 「「「「」」 「「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」 「「」」 「「」 「」 「」 「「」 「」 「「」 「」 「「」 「」 「「」 「」 「「」 「」 「「」 「」 「」 「 「」 「」 「」 「」 「」 「」 「」 「 「」 「 「」 「 「」 「」 「」 「 「」 「」 「」 「 「 「」 「」 「 「 「」 「		
	プレビューを表示するには、使用する物質をMaterial欄から選んでください	.\ ₀	ノプレビュー表示欄
	<- 基板側 物理膜厚 /	入射媒質側 ->	J
		👖 Close	

• 既存データーの編集

既存データーを編集するには、画面左側のリストから選択します。

● 新規作成

新たに不均質データーを作成するには、[■新規]を押します。 次に、不均質データーの名前(ファイル名)を入力し、[OK]をク リックします。

不均質データーの新規作成	
不均質データーの名前	
OK Cancel	

- 項目の説明
- 【備考欄】

不均質データーのタイトル・コメントを入力します。

これらは、メインウインドウの不均質欄にマウス矢印を合わせたときの、ポップアップウインドウに表示 されます。単なるメモであり、不均質データーの値には影響しません。

【不均質パラメーター入力欄】

nの増減量、kの増減量をそれぞれ入力します。その右側に増減させる膜厚ステップを入力します。 ※ 膜厚ステップが細かいほど計算に時間がかかります。

【プレビュー欄】

Material 欄から膜物質を選択すると、その膜物質に不均質を適用した場合のプレビューが表示されます。膜厚欄に膜厚を入力するとプレビューの膜厚軸の最大値が変わります。

次ページに例を示します。

• 不均質データーの設定例

n 増減量が-0.005、膜厚ステップが 100 Åと設定されています。 この場合、膜厚が 100 Å 増える毎に屈折率 n が-0.005 ずつ減少します。 k 増減量は 0 と設定されているので吸収係数 k は変化しません。

プレビュー欄では、ZrO2 が選択されており、膜厚は 1000 Åと設定されています。 グラフには ZrO2 の膜厚が 1000 Å の時の n の変化の様子が表示されています。 プレビューでの屈折率対象波長はメインウインドウで設定されている設計の中心波長です。

※ 注意: 不均質層の膜厚を光学膜厚で指定した場合、不均質層では屈折率 n が変化するため、 指定した光学膜厚と実際の光学膜厚は異なります。

下記の例では、第2層 Thickness 指定値 0.5 に対して実際の値は nd/λ=0.4932 となります。

	Thickness		n and k profile			
No.	<u>nd/ λ</u>	nm	Material	dn	dk	不均質
1	.2500	75.56	Al2O3	.0000	.0000	
2	.5000	121.97	ZrO2	.0000	.0000	Minus-1
3	.25(no	i/λ= 0.493	32 (at 500.0nm	n).0000	.0000	
d= 121.97 nm 不均質層						

3.12.4.他のソフトとの連携(数値や図のコピー・ペースト)

グラフや数値は、クリップボード経由で他のソフトに貼り付けることができます。

• 数値を他のソフトに貼り付ける

グラフを右クリックし、ポップアップメニューから【
参数値データーをクリップボードへコピー】を選択します。次に、表計算ソフト(例:Microsoft(R) Excel)などで貼り付けを実行します。

グラフを他のソフトへ貼り付ける

グラフを右クリックし、ポップアップメニューから【図をクリップボードへコピー】を選択します。形式とサ イズを指定して OK をクリックするとクリップボードにコピーされます。

次に、他のソフト(例:Microsoft(R) Excel)などで貼り付けを実行します。

Ö	波長グラフ			– 🗆 X	🕅 Merosoft Excel - Rookt
	書式設定(E) 「	L w	ーザーライン・ 🚵 分光光度計・ 눱 コピー(C)・	・ One その他・	■] カイバルシ 綿巣 シ 衣示型 1巻人型 書次型 サードル サーチ型 ウイド 7029 ヘルス B 3 ■
	2.4		書式設定(E)	図をクリップボードヘコピー	× 選長グラフ / - Exact (%)
	22	U _{ser}	ユーザーライン追加(<u>A</u>)	サイズ (単位:ピクセル)	
	1.8	۵	グラフからユーザーラインを削除(<u>D</u>)	● 現在のサイズでコピー	
_	1.6++	2	分光光度計測定ファイルからグラフへ追加(M)	588 * 326	
A(%)	1.4	0	グラフから分光光度計データーを削除(E)	○サイブを指定	a
R,T	12	¹ 23	数値データー表示(<u>N</u>)	0 9 TX21122	
	08	2	おはビーターキクロップボードへつピー(へ)		
	0.6		図をクリップボードヘコピー(P)	640 480	
	0.4	8	図をファイルへ保存(<u>S</u>) いい	OK Cancel	400 450 500 550 600 650 700 750
	0.2		グラフのズームスクロールを戻す(<u>R</u>)		
	0.0		このウインドウ位置を記憶(<u>W</u>)	40660680700720740760780	29 30 31
		\times	記憶したウインドウ位置をクリア(X)		32 33
		88	整列	•	35 14 4 1 11\ Street / (Street 3 /
			場所の入替	•	HTT/F NUM

※ クリップボードへはエンハンスメタファイル形式およびビットマップ形式の両形式がコピーされます。Excel などでは「形式を選択して貼り付け」で貼り付ける形式を選択できます。

グラフをファイルへ保存する

グラフは、図としてファイルへ保存することもできます。グラフを右クリックし、ポップアップメニューから 【記図をファイルへ保存】を選択します。形式とサイズを指定して OK ボタンを押し、名前を付けて保存します。[ファイルの種類]で、エンハンスメタファイル形式およびビットマップ形式のどちらで保存するか選択できます。

🔄 書式設定	Ê(E) ¥₀, ユーザー	ライン・ 🚵 分光光度計・ 눱 コビ	-(C) ▼		
2.4		書式設定(E)	図をファイルへ保存		: : • (
2.0	V	ユーザーライン追加(A)… グラフからユーザーラインを削除(D)	サイズ (単位:ピクセル)	★ お気に入り メタウンロード Fキュメント ライブラリ 対象フォルダー: 2か所 (************************************	ルダー 🗸
1.6 (%) 1.4 (%) 1.2 1.0	2000 C	分光光度計測定ファイルからグラフ/ グラフから分光光度計データーを削除 数値データー表示(<u>N</u>)	 ● 現在のサイズでコピー 588 * 326 ○ サイズを指定 	デスクトップ 名前 更新日時 望 最近表示した場所 面 TEEDEMO.BMP 2011/05/20 11:33 面 testchmp 2011/05/20 16:03 プスクトップ 面 testchmp 2011/05/20 16:03 マスクトップ 面 testchmp 2011/05/21 10:31 マスクトップ 面 testchmpLhmp 2011/05/21 10:31	種類 3 BMPフ 5 BMPフ 3 BMPフ 1 BMPフ
0.8 0.6 0.4 0.2		数値) - y- をクジラクホードへコピー() 図をクリップポードへコピー(P) 図をファイルへ保存(S) ソフノの人-ム人フロールを戻り(L)	640 480 OK Cancel	C	BMP 3 BMP 3 BMP 3
0.0 4	040042(= ×	このウインドウ位置を記憶(<u>W</u>) 記憶したウインドウ位置をクリア(<u>X</u>) 弊列	60680700720740760780	ファイルの環境(1): Bitmaps (*.bmp) エンパンスメタファイル(*.emf) ・ フォルダーの非式・	
		場所の入替	•	Į	

• 設計データーを他のソフトへ貼り付ける

3.12.5.Essential Macleod データーのインポート

Essential Macleod の Material と Substrate をインポートできます。また、設計データー(dds ファイル) を読み込むことができます。

• Material のインポート

メインウインドウのメニューから、[ファイル] – [インポート] – [Essential Macleod の materials データー をインポート]を選択します。

- Macie	odフォルダー	選択	C:¥ProgramData¥Thin Film Center	¥Materials¥Standard				
皮長(nm)	500							
Essential N	Acleod				TFV			
選択 Mate	rial n	k	インポート後のMaterial名		Material	n	k	
🗆 Ag	0.05000	2.87000	Ag		Ag	0.05000	2.87000	
	0.66667	5.57259	Al		AL	0.70000	5.20000	
AI20	3 1.66650	0.00000	AI2O3		AI2O3	1.65434	0.00000	
Glass	1.52141	0.00000	Glass	0	AI2O3(KTM)	1.63357	0.00014	
HfO2	1.94230	0.00000	HfO2	インポート	Au	0.84000	1.84000	
MgF2	1.38570	0.00000	MgF2		Cr	2.12000	2.90000	
☑ Na3A	IF6 1.35000	0.00000	Na3AlF6	1	Cu	1.00000	2.40000	
SiO2	1.46235	0.00000	SiO2		Cytop	1.34198	0.00000	
Ta2O	5 2.14545	0.00000	Ta2O5		H2	2.09793	0.00000	
TiO2	2.35786	0.00045	TiO2		H4	2.06935	0.00000	
Y2O3	1.79819	0.00013	Y2O3		HfO2(KTM)	2.02520	0.00084	
ZrO2	2.06811	0.00006	ZrO2		ITO-Test	2.08024	0.00511	
					LaF3	1.59500	0.00000	
人深中	A SEC	+0 42 54 /1	p.		LaF3(KTM)	1.58690	0.00115	
主選択	,A) 28	577月年月末(L	J		M3	1 83970	0 00000	

規定では Macleod の Standard フォルダーに登録されている Material の一覧が画面左側に表示され ます。他のデーターをインポートしたい場合は、[Macleod フォルダー選択]ボタンを押し、フォルダーを指 定してください。

波長欄で波長を入力すると、nkの欄に波長に対する nk が表示されます。参考情報としてご利用ください。

画面下部の、「名称の末尾に文字を追加してインポート」にチェックを入れると、Material 名の末尾に 「追加する文字」で指定した文字を追加してインポートします。

画面下部の、「名称が同じ場合」の欄で、「上書き」を選択すると、Essential Macleod と TFV とで Material 名が同じ場合、インポートすると TFV の Material が上書きされます。「名称の末尾に数字を追 加」を選択すると、Essential Macleod の Material 名の末尾に数字を追加して TFV の Material を上書 きしないようにインポートします。

インポートボタンを押すと、Essential Macleod の選択欄にチェックが入っている Material が TFV にインポートされます。

 Substrate のインポート メインウインドウのメニューから、[ファイル] – [インポート] – [Essential Macleod の substrates データ ーをインポート]を選択します。

● Essential Macleodのsubstratesデーターをインポート	– 🗆 ×	
▲Macleodフォルダー選択 C:¥ProgramData¥Thin Film Center¥Materials¥Standard		
波長(nm) 500 ÷ 基板の厚さ(mm) 1÷		Essential Macleod は材
Essential Macleod	TFV	씨르 ゟ しまたご ゟ
選択 Material n k Ti(%) インポート後のSubstrate名	Substrate n k Ti(%) ^	科ナーダーと基板ナーダ
□ Ag 0.05000 2.87000 Ag	ADC1(HOYA) 1.62574 0.00000 100.00000	一の区別がたいので両
AI 0.66667 5.57259 AI	Al2O3(Subst) 1.77425 0.00000 100.00000	
AI2O3 1.66650 0.00000 AI2O3	ALON(Subst) 1.79779 0.00000 100.00000	方混在 てリストに表示
Glass 1.52141 0.00000 99.98397 Glass	APEL 1.54936 0.00000 100.00000	J M L C C / XI L A X
□ HfO2 1.94230 0.00000 HfO2 12	ンポート BAC4(HOYA) 1.57467 0.00000 99.95997	されます, 選択欄のチェ
MgF2 1.38570 0.00000 MgF2	BACD2(HOYA) 1.61355 0.00000 99.97999	
□ Na3AlF6 1.35000 0.00000 Na3AlF6	BACD4(HOYA) 1.61874 0.00000 99.97999	ックボックスで手動で選
SiO2 1.46235 0.00000 SiO2	BACD5(HOYA) 1.59465 0.00000 99.97999	
Ta2O5 2.14545 0.00000 Ta2O5	BACD11(HOYA) 1.56917 0.00000 99.97999	択 てインポート てくだ
TiO2 2.35786 0.00045 TiO2	BACD14(HOYA) 1.60882 0.00000 99.95997	
203 1.79819 0.00013 Y2O3	BACD15(HOYA) 1.62915 0.00000 99.97999	さい
□ ZrO2 2.06811 0.00006 ZrO2	BACD16(HOYA) 1.62631 0.00000 99.97999	CV .
	BACD18(HOYA) 1.64517 0.00000 99.95997	
	BACED5(HOYA) 1.66591 0.00000 99.97999	
	BAE2(CDGM) 1 57636 0 00000 99 96996 *	同じ名称の内部诱渦率も
□ 名称の末尾に文字を追加してインポート 追加する文字: (Macleod)		
名称が同じ場合:上書き		インポートされます。
: MacleodとTFVとで名称が重複	Close	
: 今回インポートしたMaterial		

規定では Macleod の Standard フォルダーに登録されている Material の一覧が画面左側に表示され ます。他のデーターをインポートしたい場合は、[Macleod フォルダー選択]ボタンを押し、フォルダーを指 定してください。

波長欄で波長を入力すると、n,k,Tiの欄に波長に対する n,k と内部透過率が表示されます。基板の厚 さ欄で厚さを入力すると、Tiの欄に厚さに対する内部透過率が表示されます。参考情報としてご利用くだ さい。

画面下部の、「名称の末尾に文字を追加してインポート」にチェックを入れると、Material 名の末尾に 「追加する文字」で指定した文字を追加してインポートします。

画面下部の、「名称が同じ場合」の欄で、「上書き」を選択すると、Essential Macleod と TFV とで Material 名が同じ場合、インポートすると TFV の Substrate が上書きされます。「名称の末尾に数字を 追加」を選択すると、Essential Macleod の Material 名の末尾に数字を追加して TFV の Substrate を 上書きしないようにインポートします。

インポートボタンを押すと、Essential Macleod の選択欄にチェックが入っている Material が TFV にインポートされます。同じ名称の内部透過率もインポートされます。

• 設計データー(dds ファイル)の読み込み

メインウインドウのメニューから、[ファイル] – [開く]で、Essential Macleod の設計データー(dds ファイル)を読み込むことができます。

中心波長、入射角、基板、入射媒質、層数、各層の膜厚・物質、Note が読み込まれます。 TFV に同名の物質が存在しない場合は自動的に物質がインポートされます。

3.12.6.ZEMAX のカラスデーターのインポート

光学設計ソフト ZEMAX のガラスデーター(AGF ファイル)をインポートできます。 メインウインドウのメニューから、[ファイル] - [インポート] - [Zemax OpticStudio ガラスカタログ (AGF ファイル)をインポート]を選択します。

[Zemax ガラスカタログ(AGF ファイル)を開く]ボタンを押して AGF ファイルを選択してください。

TFV に同じ名称のガラスデーターが既に存在する場合は上書きされます。誤ってガラスデーターを上書きしないようご注意ください。

😈 Zemax Optic	Studio ガラスカタログ(AGFファイル)をインポート			– 🗆 X
≥Zemaxガラ	ラスカタログ(AGFファイル)を開く			
波長(nm)	500 🗄 基板の厚さ(mm)	1		
Zemax OpticS	itudio		TFV	
Z	emax AGFファイルを開いてください。	つ インボート	Substrate N-KZFS8(SCHOTT) N-KZFS1(SCHOTT) N-LAF2(SCHOTT) N-LAF3(SCHOTT) N-LAF2(SCHOTT) N-LAF2(SCHOTT) N-LAF2(SCHOTT) N-LAF2(SCHOTT) N-LAF2(SCHOTT) N-LAF2(SCHOTT) N-LAF3(SCHOTT) N-LAF3(SCHOTT)	n 1.73251691737351 1.64642778304297 1.7535665107268 1.72563309584088 1.76200170456955 1.79757015187912 1.80464540034742 1.79613394979602
全選択(A)	選択解除(U)		<	>
□ 名称の末尾(こ文字を追加してインポート 追加する文字	2: (ZEMAX)		
名称が同じ場合	た 上書き 🗸			
: Zemaxと : 今回イン	TFVとで名称が重複 ポートしたデーター			閉じる

3.12.7.<u>ZEMAX へのエクスポート</u>

光学設計ソフト ZEMAX のコーティングファイルに、設計データーまたはスペクトルデーターをエクスポートできます。

メインウインドウのメニューから、[ファイル] – [エクスポート] – [ZEMAX Coating File にエクスポート...] を選択します。

2EMAX Coating File Data							-	~
ファイル(E)	and the second second		01.0		173 atta			
」新規作成 ── ZEMAX Coati	ng Fileを開く(Q) 📷	上書さ保仔()) 🔚 名	前を付けて	保仔(A)			
ZEMAX Coating File								
C:¥TFV¥ZEMAX¥Coating:	s¥COATING_1.DA	T						
Material Taper Coating T	able Ideal Ideal2	Encrypted						
AIR	Waveler	ngth(µm)	n	k				
N15		0.4 2.	55717	07 0				
AL2O3		0.46 2.	45790	60 0				
ALUM		0.5 2.	41907	510				
ALUM2		0.7 2.	33172	72 0				
SK/		0.8 2.	31312	06 0				
A2O3		1.0 2.	29222	06 0				
MGF2		2.0 2.	28594	49 0				
THF4								
ZNS								
ZRO2								
Material削除								
エクスポート								
エクスポートタイプ		TFV設計疗	-9-				a	
○光学膜厚(基板を含まな)	い)	Sheet1				7	FNAX	
 光学膜厚(基板を含む) 物理膜厚(基板を含まな) 物理膜厚(基板を含まな) 	い)					Coa	ting File 追加	(C
 計算結果をTableデーター 	としてエクスポート							

新規作成	ZEMAX Coating File を新規作成します。
ZEMAX Coating File を開く	ZEMAX Coating File を読み込みます。
	既存の ZEMAX Coating File に設計データーやスペクトルデー
	ターを追加する場合に使用します。
上書き保存	ZEMAX Coating File を上書き保存します。
名前を付けて保存	ZEMAX Coating File に名前を付けて保存します。

TFV ユーザーズガイド

注意:ZEMAX のコーティングファイルの規定のファイル名は、「COATING.DAT」です。ZEMAX のマニ ュアルによれば、このファイルは ZEMAX インストール時に上書きされるため、変更することは推奨され ていません。別の名前で保存することをお勧めします。

[Material], [Taper], [Coating], [Table]...のタブに、ZEMAX コーティングファイルの内容が表示されます。各タブの下に削除ボタンがあり、不要な項目を削除することができます。

• エクスポートタイプの選択

画面下部のエクスポート欄で、エクスポートする内容を選択します。

光学膜厚(基板を含まない)	設計データー(各層の膜厚、各物質の nk データー)を、[Material], [Coating]セクションにエクスポートします。
光学膜厚(基板を含む)	光学膜厚: 膜厚を光学膜厚(FWOT)としてエクスポートします。 物理膜厚: 膜厚を物理膜厚(μm)としてエクスポートします。 光学膜厚を選択した場合は、TFVの中心波長と、ZEMAXの制御波長
物理膜厚(基板を含まない)	か向しになるように注意してくたさい。 ZEMAX は不透明基板を層として含める必要があります。
物理膜厚(基板を含む)	基板が不透明な場合、基板を含むを選択してたさい。 基板を厚さ0の層として追加してエクスポートします。
計算結果を Table データー としてエクスポート	スペクトルデーター(計算結果)を Table データーとしてエクスポートしま す。 指定した入射角、波長に対する、反射率・透過率・位相を[Table]セクションにエクスポートします。

[TFV 設計データー]欄で、エクスポートする TFV の設計データー(シート名)を選択します。

設計データーのエクスポート

[ZEMAX Coating File に追加…]ボタンを押すと次のような画面が表示されます。

ZEMAX Coating Fileで		Coating名					
使用中のMaterial :		Sheet1					
Coating名	-						
NULL	~	Material名	I				
AR	200	TFV	ZEMAX				
WAR		TFV Material名	ZEMAX Material名	, 1			
HEAR1		AI2O3	AI2O3				
HEAR2	*	ZrO2	ZrO2				
Material名		MgF2	MgF2				
AIR							
N15							
AL2O3		Materialの上	書きを許可				
ALUM		11 11 11 11 11 11 11 11 11 11 11 11 11	月四				
ALUM2		前昇	- 1月19時				
BK7		380 -	780 🗧 nm, step	1 <mark>-</mark> nr	n リセッ	11	
CEF3							
LA2O3	· • ·			■ エクスホート	- Ca	ncel	
ZEMAX Coating fileの制限	艮]						
登録できるCoatingの数、Ma	aterial)数、層数には制限	見があります。				
名称にスペースや特殊文字、	全角文	字は使用できません	6.				
詳細は、7FMAX User's Gui	ide & Ta	寉認ください。					

Coating 名とZEMAX Material 名を、ZEMAX Coating File で使用中の名称と重複しないように入力してください。

既に存在している Material 名を上書きする場合は、[Material の上書きを許可]にチェックを入れてください。

TFV の設計データーに、dn, dk が使われている場合、別々の Material として登録できます。

計算波長範囲と間隔欄は、Material の nk 分散データーのデーターポイントを指定するためのもので す。データー数が多すぎると ZEMAX で受け付けないのでご注意ください。ZEMAX2009 年版では、 Material あたりの分散データーポイント数は 120 までです。

ZEMAX の制限事項は、ZEMAX User's Guide をご参照ください。

[エクスポート]ボタンを押すと、ZEMAX Coating File にエクスポートします。 注意: この時点ではメモリー内に登録しただけで、まだファイルには保存していません。最後にファイ ル保存してください。

• スペクトルデーターのエクスポート

エクスポートタイプで、[計算結果を Table データーとしてエクスポート]を選択した状態で、[ZEMAX Coating File に追加...]ボタンを押すと次のような画面が表示されます。

Table Parameters for ZEMAX		— C) ×
Table名			
5heet1			
入射角(deg.)	^	波長(nm)	
	0		380
	1		381
	2		382
	3		383
	4		384
	5		385
	6		386
	7		387
	8		388
	9		389
	10		390
	11		391
	12		392
	13		393
	14 ~		394
クリア \> コビー □ 貼付 > 挿入 > 削除		>クリア >コビー ◎貼付 >挿入 >削除	

テーブル名と、入射角、波長を入力してください。

[リセット]ボタンを押すと、メインウインドウで設定されている波長範囲、入射角範囲の内容が自動入力 されます。または、画面下部のツールバーで、Excel などから入射角や波長を貼り付けることができま す。

[エクスポート]ボタンを押すと、ZEMAX Coating File にエクスポートします。

注意: この時点ではメモリー内に登録しただけで、まだファイルには保存していません。最後にファイ ル保存してください。

3.12.8.メインウインドウのパラメーター表示

メインウインドウの「パラメーター表示/非表示切替ボタン」で、蒸着コントロールパラメーター・最適化 パラメーター・製造誤差解析パラメーターの表示/非表示の切り替えができます。

通常は自動的に表示/非表示が切り替わりますが、手動で切り替えたい場合に使用してください。

😈 TFV					—		×	
ファイル(E) 赺 🖹 🕌	編集(E)	表示(V) シ・ D 〜 ^し ∧ M	-ト選択(<u>S)</u> ツール -▶ 🖵 🕂 O _{Pt}	(II) ヘルプ(出) 「 <mark>k</mark> 🧆				
波長		nm	~		🗸 R,	T,A単位		
38 0- Sheet1 Center Substrat	0 - 7 60 step Sheet2 Sh 50 e N-BK7(780 step 1 de neet3 She 00 nm, 7 SCHOTT	1 パ 表示/	また ラメータ 非表示 ボタン	_{通用} 。 一 切替	eet9	蒸; 最; 製;	着コントロールパラメーター(E) 適化パラメーター(O) 造誤差解析パラメーター(M)
Jubstrat	Thick	ness		n and k p	rofile			
No. 1	<u>nd/λ</u> 0.2500	nm 75.56	Material Al2O3	dn 0.0000	dk 0.0000	不均質		
2	0.5000	121.97	ZrO2 MaE2	0.0000	0.0000			
Medium ☑ Ra 〔	0.2300	Rp Ta	a 🗌 Ts 📄	Тр 📑	v.0000 東面			

- 3.12.9.膜厚を初期値に戻す Home ボタンを表示
 - メインウインドウに、選択されている層の膜厚を元に戻すための Home ボタンを表示することができます。Home キーを押したときと同様の動作をします。

メインウインドウのメニューから、[ツール] – [オプショ ン] – [スライドバーとアップダウンボタン]で、「ホーム ボタンをメインウインドウに表示」にチェックを入れる と、Home ボタンが表示されます。

Home ボタンを押すと、選択されている層の膜厚が 初期値に戻ります。

Home キーを押したときと同様の動作です。Home キーについては、「3.4.1 膜厚を変更する」の、キー ボードを利用した膜厚変更をご参照ください。

3.12.10.薄膜電卓

TFV には、薄膜に関する簡単な計算ができる「薄膜電卓」が搭載されています。「薄膜電卓」を起動するには、メニューから[ツール]-[🏫 薄膜電卓]を選択します。

次のような画面が表示されます。

薄膜電卓には、λ/4 膜の測定値から屈折率を計算する機能、2 つの面の合計反射率を計算する機 能、3 層等価膜を計算する機能があります。

【λ/4 の屈折率】

単層膜の反射率測定ピーク値から屈折率を計算する機能です。

全て入力すると膜の屈折率が表示されます。

【厚膜の反射率】

2つの面の合計反射率を計算	筸する機能です。
---------------	----------

😪 TFVMisc	
λ /4膜の屈折率 厚膜の反射率 等価膜	
2つの面の合計反射率(吸収無し)	
面1の反射率 1.5 %	● 面 1 の反射率
面2の反射率	
4.0 %	 面2の反射率 第2の面の
合計反射率	
5.383229938 % 2つの面のコヒーレントでない場合の反射率(単なる多 重反射の場合の反射率)を計算します。	

- 面1の反射率 第1の面の反射率を入力します。
- ・面2の反射率

 第2の面の反射率を入力します。

全て入力すると合計の反射率が表示されます。 ※ 基板や膜に吸収がない場合のみ正しく計算できます。

【等価膜】

ある屈折率の $\lambda/4$ 膜を、反射率が同じになるように別の2種類の屈折率の3層膜に置き換える機能 です。現実の膜材料としては存在しない屈折率の $\lambda/4$ 膜を、既存の2種類の膜材料に置き換えたいと きに使用します。

🍓 TFVMisc			
λ /4膜の屈折率 β	厚膜の反射率	等価膜	
┌3層等価膜────			
元のλ/4膜の唇	尼折率		
1.7			
置き換える膜の	屈折率(低屈	折率)	
1.47			
置き換える膜の	屈折率(高屈拍	折率)	
2.10			
膜厚 (L-H-D)	膜厚(H-L-H	
0.065573157	0.0993	33199	
0.090355759	0.0729	60271	
		J	
/			
 λ /4 膜を、反射率が同し 時の 膜厚を計算します。 	りこなるように3層	記分割した	

- 元の λ /4 膜の屈折率
 3 層に置き換えたい元の λ /4 膜の屈折率を入力します。
- ・置き換える膜の屈折率(低屈折率)

 3層に置き換えたときの低屈折率層の屈折率を入力します。
- ・置き換える膜の屈折率(高屈折率)

 3層に置き換えたときの高屈折率層の屈折率を入力します。

全て入力すると分割後の膜厚が2種類表示されます。 左側が、低屈折率-高屈折率-低屈折率の構成の3層膜、 右側が、高屈折率-低屈折率-高屈折率の構成の3層膜です。

波長 λ では等価膜の反射率は元の $\lambda/4$ 膜の反射率と同じですが、波長が λ からずれると反射率が 変わってくるので 2 種類の解からより望ましい方を選択してください。

3.13. 環境のカスタマイズ

3.13.1.オプション設定

TFV の初期設定や動作設定等をおこなうには、ツールバーのオプション。をクリックするか、メニューから、[ツール]-[⁽⁾オプション]を選択します。

左側のリストから設定したい項目を選択します。

3.13.1.1.スタートアップ設定

TFV 起動時の状態を設定します。普段よく使うスペクトル範囲や入射角範囲を設定しておくと便利で

す。

[スペクトル範囲]

起動時に適用するスペクトルの種類と単位、計算範囲を指定します。

「単ースペクトル範囲の設定」を選択すると、開始スペクトル・終了スペクトル・スペクトル間隔を 設定できます。

「詳細スペクトル範囲設定」を選択し、「参照…」ボタンからスペクトル範囲設定ファイルを指定すると、ファイルに保存した詳細スペクトル範囲設定を起動時に適用することができます。

[入射角範囲]

起動時に適用する入射角計算範囲を指定します。

[起動時に開くファイル]

起動時に、Sheet1 に読み込む設計データーファイルを指定します。

[スペクトルグラフと入射角グラフの R,T,A,Phase 別整列方法]

スペクトルグラフと入射角グラフの R,T,A,Phase 別整列方法を設定します。

3.13.1.2.膜厚

メインウインドウの設計データー欄に表示される膜厚の形式を設定します。

スタートアップ	膜厚設定	
膜厚	膜厚列の表示方法	
⁹ 光学定数 スライドバーとアップダウンボタン	1. 光学膜厚・物理膜厚両方を表示	~
■ グラフ	膜厚の単位	
◎スペクトル・入射角 複合グラフ	光学膜厚	
☆蒸着コントロール ■提識度	Full Wave Optical Thickness (nd/λ)	×)
▶ 色計算	物理膜厚と設計の中心波長	
~ 製造誤差	nm	~
▶ 最適化	優先	
その他 = 語	光学膜厚	

膜厚列の表示	(1) 光学膜厚 · 物理膜厚両方を表示
方法	Thickness Thickness
	No. $\underline{nd/\lambda}$ Å No. QWOT nm
	1 .2500 755.6 1 1.0000 75.56
	(2) 光学膜厚のみ表示
	Thickness
	No. nd/λ No. QWOT
	(3)物理膜厚のみ表示
	Thickness Thickness
	No. nm No. A
	1 /3.50 1 /35.0 (4) 光学暗厚・物理暗厚白動切替素テ(1)前のバージョンでの表示方法)
	(中) 几于族序"初生族序"日勤奶首孜尔(欧丽切尔" /马/ C切孜尔乃法)
	No. nd/\larler
	1 .2500
	自動切替表示では 10 未満の値を入力すると光学膜厚、10 以上の値を
	入力すると物理膜厚と自動判断されます。
膜厚の単位	光学膜厚: nd/ λ または $\lambda/4$ を1とする QWOT 単位
	物理膜厚と設計の中心波長:A、nm、µm または mm
	※表示方法で(4)の表示方法を選んだ場合は、物理膜厚の単位:A.光学膜
	厚の単位: nd/λ に固定されます。
優先	光学膜厚・物理膜厚両方を表示している時に、光学膜厚と物理膜厚のどちらを
1210	優先するかを設定します。
	山心波長や岡圻家を変す た場合 光学時度の表示値が因完され物理時度
	[彻理朕序隊兀の场百の期1F] - 古心波目め兄に変た変更した根へ、施畑唠屈のまこはが兄白され火労唠屈
	中心波長や出折率を変更しに場合、初理誤厚の衣示値の固定され光子誤厚
	か変更されます。計算には表示されている物理膜厚か使用されます。

3.13.1.3.光学定数

分光特性の計算スペクトルが、基板や膜物質の光学定数の有効波長範囲から外れている場合の光 学定数の計算方法を設定します。

😈 オプション	
スタートアップ 映厚 光学定数 スライドバーとアップダウンボタン © グラフ © スペクトル・入射角 複合グラフ ※ スペクトル・入射角 複合グラフ	光学定数の設定 有効波長範囲外の光学定数 計算波長が基板・膜物質の有効波長範囲を超えている場合、 外挿する ○ 最小波長/最大波長のnkを使う
 ○ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	■ 分散データー有効範囲外の警告をステータスパーに表示。
	OK Cancel

外挿する	直線補間(テーブル形式)で n, k が設定されている場合は、短波長側・長波長側 それぞれ直線をそのまま波長範囲外に伸ばして外挿で n, k を計算します。 分散式で設定されている場合は、有効波長範囲から外れていても分散式をその まま適用して n, k を計算します。
最小波長/最大 波長の n,k を 使う	短波長側・長波長側それぞれ両端の n, k の値をそのまま波長範囲外の n, k の値として使用します。
分散データー 有効範囲外の 警告をステー タスバーに表 示。	 チェックを入れると、スペクトルグラフや入射角グラフなどの計算範囲が、基板・入 射媒質や Material の分散データーの有効範囲を超えている場合に、ウインドウ 下部のステータスバーに警告を表示します。 0.0 ↓

「外挿する」を選択した場合

3.13.1.4.スライドバーとアップダウンボタン

膜厚変更スライドバーや設計データーのアップダウンボタンを動かしたときの膜厚の変化量を設定し

 スタートアップ 映厚 光学定数 スライドバーとアップダウンボタン プラフ スペクトル・入射角 複合グラフ 素着コントロール 電場強度 色計算 型造誤差 最適化 その他 	× スライドバーとアップダウンボタン設定 スライドバーによる膜厚変化量 光学膜厚 nd/入 幅 ± 0.1 Step : 0.001 QWOT 幅 ± 0.5 Step : 0.005 物理膜厚 幅 ± 10 Step : 0.1 アップダウンボタンによる変化量 光学膜厚: 0.001 nd/入 0.005 QWOT 物理膜厚: 0.1	この例では、 光学膜厚 nd/λが 0.25 の場合、 スライドバーを端から端まで動かすと 膜厚が 0.15~0.35 まで 0.001 刻みで 化します。 物理膜厚 nm が 100 の場合、
百 动	 dn: 0.01 dk: 0.005 Tooling: 0.01 Filter: 5 Start: 5 周期層倍率: 0.05 2 膜厚変更スライドパーを使用。 ホームボタンをメインウインドウに表示。 	スライトハーをजからजまで動かすと 膜厚が 90~110 まで 0.1 刻みで変化 ます。

[スライドバー(膜厚コントロール)]

光学膜厚・物理膜厚それぞれ単位毎に設定します。

幅:スライドバーを端から端まで動かしたときの変化の幅を指定します。

Step : スライドバー1コマ当たりの変化量を指定します。 矢印キーを使って膜厚を変化させるときの、キーを1回押したときの変化量もこの値 になります。

[設計データー上のアップダウンボタン増減単位]

光学膜厚	光学膜厚欄でアップダウンボタンを押したときの変化量を単位毎に指定します。
物理膜厚	物理膜厚欄でアップダウンボタンを押したときの変化量を単位毎に指定します。
dn	dn 欄でアップダウンボタンを押したときの変化量を指定します。
dk	dk 欄でアップダウンボタンを押したときの変化量を指定します。
Tooling	Tooling 欄でアップダウンボタンを押したときの変化量を指定します。
Filter	Filter 欄でアップダウンボタンを押したときの変化量を指定します。
Start	Start 欄でアップダウンボタンを押したときの変化量を指定します。
周期層倍率	周期層倍率欄でアップダウンボタンを押したときの変化量を指定します。

「膜厚変更スライドバーを使用」にチェックを入れると、メインウインドウの膜厚セルをクリックしたときにスライドバーが表示され、スライドバーで膜厚が変更できます。

「ホームボタンをメインウインドウに表示」にチェックを入れると、メインウインドウに Home ボタンが 表示されます。Home ボタンを押すと、選択されている層の膜厚が初期値に戻ります。Home キーを 押したときと同様の動作です

3.13.1.5.グラフ設定 グラフの表示や動作の設定をおこないます。

🍯 オプション	
スタートアップ	グラフ設定
膜厚	□ グラフタイトルを表示
スライドバーとアップダウンボタン	■ ズーム有効
₽ グラフ	グラフ上でマウスの左ボタンを押しながら、右下方向ヘドラッグ。
スペクトル・入射角 複合グラフ	
■電場強度	
▶ 色計算	☑ スクロール有効
□製造誤差	グラフ上でマウスの右ボタンを押しながらドラッグ。
その他	
言語	
	✓ グラフウインドウにツ−ルバ−を表示
	マウスカ−ソル近くの数値を表示
	OK Cancel

[グラフタイトルを表示]

グラフ上部のタイトルを表示するかどうか指定します。 チェックを付けるとタイトルを表示します。

[ズーム有効]

グラフのズーム機能を有効にするかどうか指定します。チェックを付けると有効になります。 [スクロール有効]

グラフのスクロール機能を有効にするかどうか指定します。チェックを付けると有効になります。 ズームおよびスクロールの操作方法→「3.5.4 グラフのズーム・スクロール」。

[グラフウインドウにツールバーを表示]

グラフウインドウ上部にツールバーを付けるかどうか指定します。チェックを付けるとツールバ ーを表示します。

[マウスカーソル近くの数値を表示]

グラフの系列にマウスを近づけた時に、マウスカーソルの位置に近い系列上のデーター点の数 値を表示するかどうか指定します。チェックを付けると表示するようになります。

3.13.1.6.3D 波長・入射角複合グラフ設定

スペクトル・入射角複合グラフの設定をおこないます。

×
スペクトル・入射角 複合グラフ設定 © グラフタイトルを表示 スペクトル計算間隔の初期値 波長 <u>5</u> (nm) 入射角計算間隔の初期値 <u>5</u> (deg)
OK Cancel
扇の初期値] ▶算間隔の初期値を設定します。(nm) ♪初期値] 週隔の初期値を設定します、(dog.)

3.13.1.7.蒸着コントロール設定 蒸着コントロールの設定をおこないます。

び オプション	×
スタートアップ 脱厚 ・光学定数 スライドバーとアップダウンボタン ピグラフ ・スペクトル・入射角 複合グラフ ・素着コントロール 電場強度 ・色計算 ・製造誤差 ・ 電過化 その他 言語	蒸着コントロール設定 光学測光方式 1. 裏面反射測光 ショングステップ 1. ミロタリングステップ 0.001 モニタリングステップ 1. ミロターガラスの厚さ 1. ミロクーガラスの厚さ
	モニターガラス基板に吸収がある場合のみ必要 ② グラフ表示時にメインウインドウのコントロールデーターも表示 ② Stop%計算時に同じモニターガラスの前の層のピークも使用
	OK Cancel

詳細は、「3.6.5光学式蒸着モニター」を参照してください。

3.13.1.8.電場強度設定

電場強度の設定をおこないます。

😈 オプション	
スタートアップ 腋厚 ⇒ 光学定数 スライドバーとアップダウンボタン ⇒ ズペクトル・入射角 複合グラフ ⇒ 蒸着コントロール ⇒ 電場強度 ← 色計算 ⇒ 製造誤差 ⇒ 最適化 その他 言語	電場強度設定 計算ステップ 0.01 • (nd/λ)
	OK Cancel

[計算ステップ]

電場強度を計算するときの膜厚計算ステップです。数値が小さいほど細かく計算します。細か すぎると計算に時間がかかりますので通常は 0.01 か 0.001 を選択してください。

3.13.1.9.色計算設定

1.9.巴計算設定 色計算の初期設定	をおこないます。	
 ▲ オジョン スタートアップ 膜厚 ※ 光学定数 スライドバーとアップダウンボタン ● グラフ > スペクトル・入射角 複合グラフ > スペクトル・入射角 複合グラフ > マ場う次度 ● 色計算 - 製造誤差 ヘ 最適化 その他 言語 	色 スタートアップ設定 視野 10度視野(CIE1964) 光源 D65 グラフ © xy色度図 © a*b* 色度図	× 計算設定 数値データー ■ XYZsyz ■ XYZsyz(完全拡散面) ■ CIE L*a*b* ■ CIE L*a*b* ■ CIE L*a*b* ■ CIE L*a*b* ■ CIE UCS ■ Whiteness Index ■ SRGB ■ CIE 2000 ■ Dominant Wavelength
	計算設定 計算波長範囲と間隔 380-780nm, 5nm間隔	- OK Cancel

3.13.1.10.製造誤差設定

👅 オプション				
スタートアップ		製造誤差設定		
膜厚	スタートアップ設定			
ッ光学定数	グラフの種類	プロット	の種類	
	スペクトルグラフ	🕑 Ra	· • ·	
∞スペクトル・入射角 複合グラフ	変化させる種別			
☆蒸着コントロール	Thickness			
▶電場強度	n			
▶ 色計算	∟ k			
◎ 裴垣訣左 9. 最適化	分割数			
その他	1			
言語	試行回数			
	20			
			OK	Cancel

3.13.1.11.位相·群遅延設定

(六 1日)	レザゼ	ホヘミ	いつた	セーナ	こし へき	ヒナ
エイロの	C 4+1+	エリノお	2 JF 77	നപ്പ	トレップ	ЬУ ^

🝑 オプション	
スタートアップ 膜厚 ドゲー定数 スライドバーとアップダウンボタン ダブラフ スペクトル・入射角 複合グラフ * 素着コントロール 電場強度 * 電場強度 ● 色計算 • 型造調差 「位相・群遅延 • 最適化 その他 言語 ●	位相・群遅延設定 位相の範囲 ○ -180 ~ 180 ◎ 0 ~ 360 偏光の差の計算方法(位相, 群遅延) ◎ s-p (dFr=Frs-Frp, dFt=Fts-Ftp; GD: dR=Rs-Rp, dT=Ts-Tp) ○ p-s (dFr=Frp-Frs, dFt=Ftp-Fts; GD: dR=Rp-Rs, dT=Tp-Ts) 群遅延の単位 ● fs ○ ps
	OK Cancel

[位相の範囲]

位相の計算を、-180 度~+180 度にするか、0 度~360 度にするかを選択します。 [位相差の計算方法]

位相差の計算を、s 偏光-p 偏光にするか、p 偏光-s 偏光にするかを選択します。 [群遅延の単位]

群遅延の単位を、fs にするか、ps にするかを選択します。

3.13.1.12.スタック設定

スタックの設定をおこないます。

😈 ສວັນອນ	
スタートアップ 膜厚 ⇒ 光学定数 スライドパーとアップダウンボタン ⊂ グラフ ■ スペクトル・入射角 複合グラフ ¹ 蒸着コントロール ■ 電場強度	スタック設定 基板や煤質に吸収係数(k)がある場合の計算方法 T=Re(Nm)/Re(N ₀) τ ² (推奨) ・ スタックの基板や煤質(出射煤質は除く)に吸収がある場合は、吸 収係数(k)=0とし内部透過率を設定して使用することをお勧めしま す。
 ● 色計算 ● 包計算 ○ 型道誤差 位相 帯遅延 + スタック ● 最適化 その他 言語 	
	OK Cancel

[基板や媒質に吸収係数(k)がある場合の計算方法]

- 1. $T=Re(N_m)/Re(N_0)|\tau|^2$
- 2. $T=Re(N_m/N_0)|\tau|^2$
- 3. k₀=0

スタックの場合、途中の媒質や基板が k を持つ構成になることがあります。

その場合の計算方法を指定します。

1: 推奨。2: k≠0 で内部透過率=0(または厚さ0)などありえない構成で R+T=1 をなるべく保つ。3: 入射媒質は常に k=0 として計算。

3.13.1.13.最適化設定

最適化のパラメーター設定をおこないます。

👅 オプション						
スタートアップ	最適化設定					
膜厚	最適化パラメーター					
ア光学定数 コーノドボートマップがウンギタン	許容誤差	0.0001				
スフィトハーとアッフタウノホタノ	最大反復回数	50				
∞スペクトル・入射角 複合グラフ	光学膜厚最大值	1	FWOT (nd/λ))			
☆蒸着コントロール	物理膜厚最大值	500	(nm)			
▶ 電場強度 ▶ 免計質	グローバルサーチパラメ	-ター (焼きなまし法パラ	メーター)			
□割算	探索回数	10				
⊶ 最適化	近隣探索回数	10				
その他	乱数シード	1	シード変更			
言語	初期温度	300	(deg.)			
	冷却速度	10				
	✓ 最適化ウインドウを開くときにメインウインドウを横に拡げる。					
	 既定値に戻す 					
			OK Cance			

【最適化パラメーター】

[許容誤差]

ターゲット値と探索値との許容誤差を設定します。既定値は 1.0E-4 です。

[最大反復回数]

1回のローカルサーチでの反復回数の最大値を設定します。ここで設定した回数の反復を繰り返しても許容誤差に達しない場合に探索を停止します。既定値は 50 です。

[光学膜厚最大値]

膜厚が光学膜厚で指定されている場合の、各層の光学膜厚の最大値を設定します。各層の最 適化 Max 値が 0 の場合にこの値が最大値として使用されます。最適化 Max 値が設定されている層は そちらが優先されます。

[物理膜厚最大値]

膜厚が物理膜厚で指定されている場合の、各層の物理膜厚の最大値を設定します。各層の最 適化 Max 値が 0 の場合にこの値が最大値として使用されます。最適化 Max 値が設定されている層は そちらが優先されます。

【グローバルサーチパラメーター(焼きなまし法パラメーター)】

[探索回数]

サーチを繰り返す回数を設定します。上記「結果表示数」以上の値を設定してください。既定値は 10 です。

[近隣探索回数]

焼きなまし(アニーリング)工程で近隣を探索する回数を設定します。既定値は 10 です。

[乱数シード]

焼きなまし工程での乱数を発生させるためのシードを設定します。0を設定すると毎回異なる シードが使われます。「シード変更」ボタンを押すと新しいシードが設定されます。既定値は1です。0か ら2147483646までの値を設定できます。

[初期温度]

焼きなましの初期温度を設定します。既定値は 300K です。終了温度は 0K です。

焼きなましの冷却速度(1回当たりの減少温度)を設定します。既定値は 10K です。 「既定値に戻す」ボタンを押すと全てのパラメーターが既定値に戻ります。

3.13.1.14.その他設定

👅 オプション	×
スタートアップ 膜厚 ドン学定数 スライドバーとアップダウンボタン マグラフ スペクトル・入射角 複合グラフ *素着コントロール *電場強度 *電場強度 ・ *<	その他の設定 システム設定 ■ Windows10の透明枠を詰めて表示 ■ PCのスケーリング設定に合わせて文字を拡大縮小 テーマ Standard ■ マウスホイールによる値の変更を有効化
	Debug mode
	OK Cancel

[システム設定]

「Windows10の透明枠を詰めて表示」

Windows10の場合、ウインドウの周囲に透明の枠があるためウインドウ間に隙間があるよう に見えます。この隙間を詰めて表示したい場合にチェックを入れてください。

「PC のスケーリング設定に合わせて文字を拡大縮小」

Windows8 以降、複数のモニターを接続している場合、モニター毎に文字サイズを拡大できる 機能が備わりました。これに連動して TFV の文字サイズも拡大・縮小させたい場合にチェックを 入れてください。

「テーマ」

通常は Standard を選択してください。低速な PC の場合、Classic を選ぶと画面表示が速くなる可能性があります。

「マウスホイールによる値の変更を有効化」

チェックを入れると膜厚などの値をマウスホイールで変更できるようになります。

※ 膜厚だけでなくTFV のほぼ全ての値がマウスホイールで変更できるようになります。誤 操作にご注意ください。

[Debug mode]は使用しません。チェックを付けないでください。

3.13.1.15.言語設定

🔞 オプション	
スタートアップ 膜厚 > 光学定数 スライドパーとアップダウンボタン = グラフ > スペクトル・入射角 複合グラフ > 添着 コントロール > 電場強度 ● 色計算 - 製造誤差 ● 最適化 その他 言語	言語設定 言語 □ 日本語 □ フォント Yu Gothic UI □ サイズ 11 □ □ メニューのフォントも変更
	OK Cancel

表示言語を設定します。

日本語・英語・繁体中文を選択することができます。

フォント欄で、フォントの種類とサイズを指定できます。

「メニューのフォントも変更」にチェックを入れると、メニューのフォントも変更されます。チェックを入れ ない場合は Windows の設定が使われます。

4. 初期導入済みの基板データー・膜物質データー

4.1. 基板データー

下記の基板データーがあらかじめ組み込まれています。

SCHOTT 164 種類	BAFN6, BK7G18, F2, F2G12, F2HT, F4, F5, FK3, FK5HTi, K5G20, K7, K10, KZFS12, KZFSN4, KZFSN5 LAEN7 LAK9G15 LAKL12 LASE35 LASEN9 LF5 LF5G15 LF5G19 LF5HTi LITHOSIL-
.lan 2019	Q, LITHOTEC-CAF2, LLF1, LLF1HTi, N-BAF3, N-BAF4, N-BAF10, N-BAF51, N-BAF52, N-BAK1, N- BAK2, N-BAK4, N-BAK4HT, N-BALF4, N-BALF5, N-BASF2, N-BASF64, N-BK7, N-BK7HT, N-BK7HTi,
Catalog	N-BK10, N-F2, N-FK5, N-FK51, N-FK51A, N-FK58, N-K5, N-KF9, N-KZFS2, N-KZFS4, N-KZFS4HT, N-KZFS5, N-KZFS8, N-KZFS11, N-I AF2, N-I AF3, N-I AF7, N-I AF21, N-I AF32, N-I AF33, N-I AF34
	N-LAF35, N-LAF36, N-LAK7, N-LAK8, N-LAK9, N-LAK10, N-LAK12, N-LAK14, N-LAK21, N-LAK22,
	N-LAK33A, N-LAK33B, N-LAK34, N-LASF9, N-LASF9H1, N-LASF31, N-LASF31A, N-LASF40, N-LASF41, N-LASF43, N-LASF44, N-LASF45, N-LASF45HT, N-LASF46, N-LASF46A, N-LASF46B, N-
	PK51, N-PK52A, N-PSK3, N-PSK53, N-PSK53A, N-SF1, N-SF2, N-SF4, N-SF5, N-SF6, N-SF6HT, N- SF6HTultra N-SF8 N-SF10 N-SF11 N-SF14 N-SF15 N-SF19 N-SF56 N-SF57 N-SF57HT N-
	SF57HTultra, N-SF64, N-SF66, N-SK2, N-SK2HT, N-SK4, N-SK5, N-SK10, N-SK11, N-SK14, N-
	SK15, N-SK16, N-SSK2, N-SSK5, N-SSK8, N-ZK7, N-ZK7A, P-BK7, P-LAF37, P-LAK35, P-LASF47, P-LASF50, P-LASF51, P-PK53, P-SF8, P-SF67, P-SF68, P-SF69, P-SK57, P-SK57Q1, P-SK58A, P-
	SK60, SF1, SF2, SF4, SF5, SF6, SF6G05, SF6HT, SF10, SF11, SF14, SF15, SF56A, SF57, SF57HT, SF57HT, SF57HT, SF66, SF16, SF157, Zerodur
OHARA	BAL15Y, BAL35Y, BSL7Y, BSM51Y, LAH80, L-BAL35, L-BAL35P, L-BAL42, L-BAL42P, L-BAL43, L-
222 種類	BBH1, L-BBH2, L-BSL7, L-LAH53, L-LAH81, L-LAH83, L-LAH84, L-LAH85, L-LAH85V, L-LAH86, L- LAH87, L-LAH90, L-LAH91, L-LAH94, L-LAL12, L-LAL13, L-LAL15, L-LAM60, L-LAM69, L-LAM72, L-
Aug-3, 2020	NBH54, L-PHL1, L-PHL2, L-TIH53, L-TIM28, L-TIM28P, PBH55, PBH56, PBL1Y, PBL6Y, PBL25Y, PBL26Y, PBL35Y, PBM2Y, PBM8Y, PBM18Y, S-APL1, S-BAH10, S-BAH11, S-BAH27, S-BAH28, S-
Catalog	BAH32, S-BAL2, S-BAL3, S-BAL11, S-BAL12, S-BAL14, S-BAL22, S-BAL35, S-BAL41, S-BAL42, S-
	BAL50, S-BAM3, S-BAM4, S-BAM12, S-BSL7, S-BSM2, S-BSM4, S-BSM9, S-BSM10, S-BSM14, S- BSM15, S-BSM16, S-BSM18, S-BSM21, S-BSM22, S-BSM25, S-BSM28, S-BSM36, S-BSM71, S-
	BSM81, S-BSM93, S-FPL51, S-FPL51Y, S-FPL53, S-FPL55, S-FPM2, S-FPM3, S-FPM4, S-FSL5, S- FSL5Y, S-FTL10, S-FTM16, S-LAH51, S-LAH52, S-LAH520, S-LAH53, S-LAH53V, S-LAH54, S-
	LAH55, S-LAH55V, S-LAH55VS, S-LAH58, S-LAH59, S-LAH60, S-LAH60MQ, S-LAH60V, S-LAH63,
	S-LAH63Q, S-LAH64, S-LAH65, S-LAH65V, S-LAH65VS, S-LAH66, S-LAH71, S-LAH79, S-LAH88, S-LAH89, S-LAH92, S-LAH93, S-LAH95, S-LAH96, S-LAH97, S-LAH98, S-LAH99, S-LAL7, S-LAL7Q,
	S-LAL8, S-LAL9, S-LAL10, S-LAL11, S-LAL12, S-LAL12Q, S-LAL13, S-LAL14, S-LAL18, S-LAL19, S-
	S-LAM2, S-LAM3, S-LAM7, S-LAM51, S-LAM52, S-LAM54, S-LAM55, S-LAM58, S-LAM59, S-LAM60,
	S-LAM61, S-LAM66, S-LAM73, S-NBH5, S-NBH8, S-NBH51, S-NBH52, S-NBH52V, S-NBH53V, S-NBH55, S-NBH56, S-NBH57, S-NBH58, S-NBM51, S-NPH1, S-NPH1W, S-NPH2, S-
	NPH3, S-NPH4, S-NPH5, S-NPH7, S-NPH53, S-NSL2, S-NSL3, S-NSL5, S-NSL36, S-PHM51, S- PHM52, S-PHM520, S-PHM53, S-TIH1, S-TIH3, S-TIH4, S-TIH6, S-TIH10, S-TIH11, S-TIH13, S-
	TIH14, S-TIH18, S-TIH20, S-TIH23, S-TIH53, S-TIH53W, S-TIH57, S-TIL1, S-TIL2, S-TIL6, S-TIL25,
	S-TIL26, S-TIL27, S-TIM1, S-TIM2, S-TIM3, S-TIM5, S-TIM8, S-TIM22, S-TIM25, S-TIM27, S-TIM28, S-TIM35, S-TIM39, S-YGH51, S-YGH52, TIH53
HOYA 217	ADC1, BAC4, BACD2, BACD4, BACD5, BACD11, BACD14, BACD15, BACD16, BACD18, BACED5, BAE10, BAE11, BAED7, BAED8, BAED15, BSC7, E-ADE10, E-ADE50, E-BACD10, E-BACED20, E-
217 1主友	BAF8, E-C3, E-C76, E-F1, E-F2, E-F3, E-F5, E-F8, E-FD1, E-FD1L, E-FD2, E-FD4, E-FD4L, E-FD5,
Mar-14, 2020	E-FD7, E-FD8, E-FD10, E-FD10L, E-FD13, E-FD15, E-FD15L, E-FD80, E-FDS1, E-FDS1-W, E-FDS2, E-FDS3, E-FEL1, E-FEL2, E-FEL6, E-FL5, E-FL6, E-LAF7, FC5, FCD1, FCD1B, FCD10, FCD10A,
Catalog	FCD100, FCD500, FCD505, FCD515, FCD600, FCD705, FD60, FD60-W, FD110, FD140, FD225, FDS16-W, FDS18, FDS18-W, FDS20-W, FDS24, FDS24-W, FDS30, FDS90, FDS90(P), FDS90-SG
	FF5, FF8, LAC7, LAC8, LAC9, LAC10, LAC12, LAC13, LAC14, LACL60, LAF2, LAF3, LAFL2, LBC3N,
	M-BACD5N, M-BACD12, M-BACD15, MC-BACD5N, MC-BACD12, MC-FCD1-M20, MC-FCD500-20, MC-FD80, MC-FDS2, MC-FDS910-50, MC-LAC130, MC-NBF1, MC-NBFD130, MC-NBFD135, MC-
	PCD4-40, MC-PCD51-70, MC-TAF1, MC-TAF31-15, MC-TAF101-100, MC-TAF105, MC-TAF401, MC-TAFD51-50, MC-TAFD305, MC-TAFD307, M-FCD1, M-FCD500, M-FD60, M-FD80, M-FDS1, M-
	FDS2, M-FDS910, M-LAC8, M-LAC14, M-LAC130, M-LAF81, M-NBF1, M-NBFD10, M-NBFD82, M-NBFD120, MD PACD51, MD PACD54, MD PACD5
	M20, MP-FCD500-20, MP-FD80, MP-FDS1, MP-FDS2, MP-FDS910-50, MP-LAC8-30, MP-LAC14-
	80, MP-LAC130, MP-LAF81, MP-NBF1, MP-NBFD10-20, MP-NBFD130, MP-PCD4-40, MP-PCD51- 70, MP-PCD55AR, MP-TAC60-90, MP-TAC80-60, MP-TAF31-15, MP-TAF101-100, MP-TAF105. MP-
	TAF401, MP-TAFD51-50, MP-TAFD305, MP-TAFD307, MP-TAFD405, M-TAC60, M-TAC80, M- TAF1, M TAF21, M TAF101, M TAF105, M TAF201, M TAF2020, M TAF20205, M
	TAFD307, M-TAFD405, NBF1, NBF2, NBFD3, NBFD10, NBFD11, NBFD12, NBFD13, NBFD15,
	NBFD15-W, NBFD25, NBFD29, NBFD30, NBFD32, PCD4, PCD40, PCD51, TAC2, TAC4, TAC6, TAC8, TAF1, TAF2, TAF3, TAF3D, TAF4, TAF5, TAFD5F, TAFD5G, TAFD25, TAFD30. TAFD32.
	TAFD33, TAFD35, TAFD37, TAFD37A, TAFD40, TAFD40-W, TAFD45, TAFD55, TAFD55-W,
L	111 200

CDGM	BAF2, BaF3, BaF4, BaF5, BaF6, BaF7, BaF8, D-FK61, D-FK61A, D-FK95, D-K9, D-K9GT, D-K9L, D-
(成都光明)	K59, D-LaF050, D-LAF50, D-LaF53, D-LAF79, D-LAF82L, D-LaK5, D-LAK6, D-LAK70, D-PK3, D-
314 種類	QK3L, D-ZF10, D-ZF93, D-ZK2, D-ZK2L, D-ZK3, D-ZK3L, D-ZK79, D-ZLaF50, D-ZLAF52LA, D-
	ZLaF61, D-ZLAF67, D-ZLaF81, D-ZLaF85A, D-ZLaF85L, D-ZPK1A, D-ZPK3, F1, F2, F3, F4, F5, F6,
Sep, 2020	F7, F13, H-BaF2, H-BAF3, H-BaF4, H-BAF5, H-BAF6, H-BaF7, H-BAF8, H-BaK1, H-BaK2, H-BaK3,
Catalog	H-BaK4, H-BAK5, H-BaK6, H-BaK7, H-BaK7A, H-BaK7GT, H-BaK8, H-F1, H-F2, H-F4, H-F13, H-F51,
	H-FK61, H-FK61B, H-FK71, H-FK71A, H-FK95N, H-K1, H-K2, H-K3, H-K5, H-K6, H-K7, H-K8, H-
	K90G11, H-K9L, H-K9L, H-K9LG1, H-K10, H-K11, H-K12, H-K50, H-K51, H-K51A, H-KF6, H-L8F1,
	H-LAF2, H-LAF3, H-LAF3A, H-LAF3B, H-LAF4, H-LAF4G1, H-LAF6L, H-LAF6LA, H-LAF7, H-LAF10L,
	NELAFIULA, N-LAFSUA, N-LAFSUD, N-LAFSU, N-LAFS
	$ \Delta K R \Delta H_1 a K R H_1 A K 10 H_1 A K 11 H_1 A K 12 H_1 a K 50 H_1 A K 50 A H_1 a K 51 H_1 a K 51 A H_1 a H_1 a K 51 A H_1 a K 51 A H_1 a H_1 a K 51 A H_1 a $
	LaK52 H-LaK53 H-LAK53A H-LAK53B H-LaK54 H-LAK59 H-LAK59A H-LAK61 H-LAK67 H-OF1
	H-QE3 H-QE6 H-QE6A H-QE8 H-QE14 H-QE50 H-QE50A H-QE56 H-QK1 H-QK3 H-QK3 H-
	QK3LGTi, H-TF3L, H-TF5, H-TF8, HWS1, HWS2, HWS3, HWS4, HWS5, HWS6, HWS7, HWS27, H-
	ZBAF1, H-ZBaF3, H-ZBAF4, H-ZBaF5, H-ZBaF16, H-ZBAF20, H-ZBAF21, H-ZBaF50, H-ZBaF52, H-
	ZF1, H-ZF1A, H-ZF2, H-ZF3, H-ZF4, H-ZF4A, H-ZF4AGT, H-ZF5, H-ZF6, H-ZF7L, H-ZF7LA, H-
	ZF7LAGT, H-ZF10, H-ZF11, H-ZF12, H-ZF13, H-ZF13GT, H-ZF39, H-ZF50, H-ZF52, H-ZF52A, H-
	ZF52GT, H-ZF52TT, H-ZF62, H-ZF62GT, H-ZF71, H-ZF71GT, H-ZF72A, H-ZF72AGT, H-ZF73, H-
	ZF73GT, H-ZF88, H-ZF88GT, H-ZK1, H-ZK2, H-ZK3, H-ZK3A, H-ZK4, H-ZK5, H-ZK6, H-ZK7, H-
	ZK7A, H-ZK8, H-ZK9, H-ZK9A, H-ZK9B, H-ZK10, H-ZK10L, H-ZK11, H-ZK14, H-ZK20, H-ZK21, H-
	ZK50, H-ZK50GT, H-ZLaF1, H-ZLaF2A, H-ZLAF3, H-ZLaF4LA, H-ZLaF4LB, H-ZLaF50A, H-ZLaF50B,
	H-ZLAF50D, H-ZLaF50E, H-ZLaF51, H-ZLaF52, H-ZLaF52A, H-ZLaF53, H-ZLAF53A, H-ZLAF53B,
	H-ZLaF53BGT, H-ZLaF55, H-ZLAF55A, H-ZLaF55C, H-ZLaF55D, H-ZLaF56, H-ZLAF56A, H-
	ZLaF56B, H-ZLAF66, H-ZLAF66GT, H-ZLAF68, H-ZLaF68B, H-ZLaF68C, H-ZLaF68N, H-ZLAF69, H-
	ZLaF69A, H-ZLaF71, H-ZLaF71AG1, H-ZLAF75, H-ZLaF75A, H-ZLaF75B, H-ZLAF76, H-ZLaF76A,
	H-ZLAF78, H-ZLAF78A, H-ZLAF78B, H-ZLAF85L, H-ZLAF89L, H-ZLAF9U, H-ZLAF92, H-ZPK1, H-
	ZPKTA, H-ZPKZ, H-ZPKZA, H-ZPK3, H-ZPK5, H-ZPK7, K4A, K5U, QFT, QF3, QF5, QF6, QF8, QF90, QF6, QF90, QF6, QF90, ZP6500, ZP65000, ZP6500, ZP6500, ZP6500, ZP6500, ZP65000, ZP6500, ZP6500, ZP6500, ZP65000, ZP650000, ZP650000, ZP650000, ZP650000, ZP650000, ZP6500000, ZP650000000000, ZP65000000000000000000000000000000000000
	QF30G11, 1F3, ZDdF1, ZDdF2, ZDdF4, ZDdF17, ZDdF20A, ZDdF21A, ZDdF31, ZF1, ZF2, ZF3, ZF4,
НІКЛРІ	E-BAE3 E-BAE4 E-BAE8 E-BAE10 E-BAE11 E-BAE12 E-BAK1 E-BAK2 E-BAK4 E-BALE4 E-
302 種類	BASE2 E-BASE6 E-BASE7 E-BASE8 E-BK7 E-E1 E-E2 E-E3 E-E5 E-E8 E-E16 E-EK01 E-EK5
002 1 <u>2 7</u> g	E-FKH1, E-FKH2, E-K3, E-K5, E-KF6, E-KZFH1, E-LAF01, E-LAF02, E-LAF2, E-LAF3, E-LAF04, E-
Apr-1 2020	LAF05, E-LAF7, E-LAF09, E-LAF010, E-LAF11, E-LAF016, E-LAFH2, E-LAFH3, E-LAK01, E-LAK02,
Catalog	E-LAK04, E-LAK06, E-LAK7, E-LAK8, E-LAK09, E-LAK9, E-LAK10, E-LAK011, E-LAK12, E-LAK13,
	E-LAK14, E-LAK18, E-LAKH1, E-LASF01, E-LASF02, E-LASF03, E-LASF04, E-LASF05, E-LASF08,
	E-LASF09, E-LASF010, E-LASF013, E-LASF014, E-LASF015, E-LASF016, E-LASF017, E-LASF021,
	E-LASFH2, E-LASFH6, E-LASFH9, E-LASFH13, E-LASFH15, E-LASFH17, E-LASKH2, E-LF5, E-
	LF6, E-LF7, E-LLF1, E-LLF2, E-LLF6, E-PKH1, E-PSK02, E-PSK03, E-PSKH1, E-SF1, E-SF2, E-
	SF03, E-SF4, E-SF5, E-SF6, E-SF7, E-SF8, E-SF10, E-SF11, E-SF13, E-SF14, E-SF15, E-SFH1, E-
	SFH2, E-SFS3, E-SK2, E-SK4, E-SK5, E-SK10, E-SK11, E-SK12, E-SK14, E-SK15, E-SK16, E-SK16,
	E-SSFHI, E-SSKI, E-SSKS, E-SSKS, J-BAF3, J-BAF4, J-BAF8, J-BAF10, J-BAF11, J-BAF12, J-
	DARI, J-DARZ, J-DAR4, J-DALF4, J-DASFZ, J-DASF0, J-DASF1, J-DASF0, J-DR1, J-DR1A, J-F1, J-
	I LKZEHA I LKZEHE I LKZEHT I LKZEHO LI AEOT I LI AEOT I LAET IL AEOT I AET I AEOT I AEOT I AEOT I AEOT I AEOT I
	LAE7 .I-LAE09 .I-LAE010 .I-LAE016 .I-LAE016HS .I-LAEH3 .I-LAEH3HS .I-LAK01 .I-LAK02 .I-
	LAK04, J-LAK06, J-LAK7, J-LAK7R, J-LAK8, J-LAK09, J-LAK9, J-LAK10, J-LAK011, J-LAK12, J-
	LAK13, J-LAK14, J-LAK18, J-LASF01, J-LASF02, J-LASF03, J-LASF05, J-LASF05HS, J-LASF08, J-
	LASF08A, J-LASF09, J-LASF09A, J-LASF010, J-LASF013, J-LASF014, J-LASF015, J-LASF015HS,
	J-LASF016, J-LASF017, J-LASF021, J-LASF021HS, J-LASFH2, J-LASFH6, J-LASFH9, J-LASFH9A,
	J-LASFH13, J-LASFH13HS, J-LASFH15, J-LASFH15HS, J-LASFH16, J-LASFH17, J-LASFH17HS, J-
	LASFH21, J-LASFH22, J-LASFH23, J-LASFH24, J-LASFH24HS, J-LASKH2, J-LF5, J-LF6, J-LF7, J-
	LLF1, J-LLF2, J-LLF6, J-PKH1, J-PSK02, J-PSK03, J-PSKH1, J-PSKH4, J-PSKH8, J-SF1, J-SF2, J-
	SF03, J-SF03HS, J-SF4, J-SF5, J-SF6, J-SF6HS, J-SF7, J-SF8, J-SF10, J-SF11, J-SF13, J-SF14, J-
	5F15, J-SFH1, J-SFH1H5, J-SFH2, J-SFH4, J-SFH5, J-SFS3, J-SK2, J-SK4, J-SK5, J-SK10, J-SK11,
	J-5K12, J-5K14, J-5K15, J-5K10, J-5K10, J-5SK1, J-55K5, J-5SK8, P-FKU15, P-FKH25, P-
	LAPUTUS, F-LANTIS, F-LANTIS, F-LANTIS, F-LANTITS, F-LANTITS, F-LANTITS, F-LANTITS, F-LANTITS, F-LANTINS, F-
	0-FKH2S Q-I AF010S Q-I AFPH1S Q-I AK13S Q-I AK52S Q-I AK53S Q-I ASE03S Q-I ASE11S
	Q-LASFH12S, Q-LASFH58S, Q-LASFH59S, Q-LASFPH2S, Q-LASFPH3S, Q-PSKH1S, Q-PSKH2S
	Q-PSKH4S, Q-PSKH52S, Q-SF6S, Q-SK12S, Q-SK15S, Q-SK52S, Q-SK55S
SUMITA	K-BaF8, K-BaF9, K-BaFn1, K-BaFn3, K-BaSF4, K-BaSF5, K-BaSF12, K-BK7, K-BOC30, K-BPG2, K-
143 種類	CaFK95, K-CD45, K-CD120, K-CD300, K-CSK120, K-FIR98UV, K-FIR100UV, K-FK5, K-GFK68, K-
	GFK70, K-GIR79, K-GIR140, K-LaF2, K-LaF3, K-LaFK50, K-LaFK50T, K-LaFK55, K-LaFK58, K-
Jul-15, 2020	LaFK60, K-LaFK63, K-LaFK65, K-LaFn1, K-LaFn2, K-LaFn3, K-LaFn5, K-LaFn9, K-LaFn11, K-LaK6,
Catalog	K-LaK7, K-LaK8, K-LaK9, K-LaK10, K-LaK11, K-LaK12, K-LaK13, K-LaK14, K-LaK18, K-LaKn2, K-
-	LaKn7, K-LaKn12, K-LaKn14, K-LaSFn1, K-LaSFn2, K-LaSFn3, K-LaSFn4, K-LaSFn6, K-LaSFn7, K-
	Lastno, K-Lastnow, K-Lastno, K-
	Lastnzz, K-Lastnzz, K-Laskn1, K-LCV93, K-LCV161, K-PBK40, K-PBK50, K-PBK60, K-PFK80, K-
	_ PER85, K-PER90, K-PG325, K-PG375, K-PG395, K-PMK30, K-PSEn1, K-PSEn2, K-PSEn3, K-PSEn4, _

	K-PSFn5, K-PSFn166, K-PSFn173, K-PSFn185, K-PSFn190, K-PSFn202, K-PSFn203, K-PSFn214,
	K-PSFn214P, K-PSK11, K-PSK100, K-PSK200, K-PSK300, K-PSK400, K-PSK500, K-PSKn2, K-
	SFLD1, K-SFLD2, K-SFLD4, K-SFLD5, K-SFLD6, K-SFLD8, K-SFLD8W, K-SFLD10, K-SFLD11, K-
	SFLD14, K-SFLD66, K-SFLDn3, K-SFLDn3W, K-SK4, K-SK5, K-SK7, K-SK14, K-SK15, K-SK16, K-
	SK16RH, K-SK18, K-SK18RH, K-SKF6, K-SKLD100, K-SKLD120, K-SKLD200, K-SSK1, K-SSK3, K-
	SSK4, K-SSK9, K-VC78, K-VC79, K-VC80, K-VC82, K-VC89, K-VC90, K-VC91, K-VC99, K-VC100,
	K-VC179, K-VC181, K-VC185, K-ZnSF8
その他	Al2O3(Subst), ALON(Subst), APEL, CaF2, GaAs(Subst), Ge(Subst), PCHMA, PEI, PMMA, PMMA1,
19 種類	Polycarbonate, Polystyrene, Quartz, SAN, Si(Subst), ZEONEX-330R, ZEONEX-480R, ZEONEX-
10 12 20	E48R, ZnSe(Subst)

4.2. 膜物質データー

下記の膜物質データーがあらかじめ組み込まれています。

Ag, Al2O3, AL, Au, Cr, Cu, H2, H4, LaF3, M3, M3-RT, MgF2, Nb2O5, Nb2O5-RT, OH5, OH5-RT, OS50, OS50-RT, SiO2, Ta2O5, Ta2O5-RT, Ti, TiO2, Zn, ZnS, ZrO2, Cytop

Al2O3(KTM), HfO2(KTM), LaF3(KTM), Ti3O5(KTM), ZrO2(KTM), ZRT2(KTM) ※ KTM: 京都薄膜材料研究所(Kyoto Thin-Film Materials institute)

メーカー公表のカタログデーターまたは文献データーを使用しています。

5. <u>リファレンスマニュアル</u>

5.1. メインウインドウ

😈 TFV					×	
ファイル(E) 編集(E) 表	示(V) シート選択(<u>S</u>) ツール	(I) ヘルプ(<u>H</u>)		-		メインメニュー
📂 🖻 🔛 📖 🛰 3D 🎙	ᆂ [∿] ^ โm 🔈 เ) @ - 📲	• 0 _{pt} n _k 🎂		-		N-11.13-
波長	nm 🔪		V R	,T,A単位		
380 - 78	0 step 1 nm	詳細	適用	%	≻	- 計質な囲、計質問庭訳ウェリマ
0- 60 step	1 deg, Ref=	500 nm	リセット	<		計昇軋囲・計昇间隔設化エリア
Sheet1 Sheet2 She	et3 Sheet4 Sheet5 Sh	eet6 Sheet7	7 Sheet8	Sheet9 She		
Center 500	🖶 nm, Angle	0 🖶 deg				
Substrate N-BK7(SC	CHOTT)		· · ·			
Thickne	ess	n and k pi	rofile			
Νο. <u>nd/λ</u>	nm Material	dn	dk	不均質		
1 0.2500	75.56 Al2O3	0.0000	0.0000			> 設計データーエリア
2 0.5000	121.97 ZrO2	0.0000	0.0000			
3 0.2500	90.27 MgF2	0.0000	0.0000			
Medium 1			¥.		/	
🗹 Ra 🗌 Rs 🗌 R	tp 🗌 Ta 🗌 Ts 🔲	Тр 🗌	裏面			
🗆 Aa 🗌 As 🗌 A	p 🗌 ODa 🗌 ODs 🗌	ODp		_		計算の種類選択エリア
🗆 Frs 🛛 Frp 🗌 d	Fr 🗆 Fts 🗌 Ftp 🗌	dFt 選	択解除			

5.1.1.<u>メインメニュー</u>

メインメニュー内の項目とそれぞれの機能を説明します。

• ファイル

┣新規作成(N)	:新規に設計データーを作成します。
≧開く(O)	: ファイルから設計データーを読み込みます。
∂ 再読込(R)	: ファイルから設計データーを再読込し、保存された状態に戻します。 それまでに編集した内容は破棄されます。
最近使ったファイル	: 最近使った設計データーファイルを 20 個まで表示します。 [クリア]を選択すると履歴が消去されリストに表示されなくなります。
₩上書き保存(S)	設計データーを上書き保存します。
🗎名前を付けて保存(A)	: ファイルに設計データーを保存します。
──プロジェクトを開く	: ファイルからプロジェクトを読み込みます。
最近使ったプロジェクト	: 最近使ったプロジェクトファイルを 20 個まで表示します。 [クリア]を選択すると履歴が消去されリストに表示されなくなります。
	: プロジェクトを上書き保存します。
₿名前を付けてプロジェクを保存	ト:ファイルにプロジェクトを保存します。
プロジェクトを閉じる	: 現在のプロジェクトの内容を破棄して画面を初期状態に戻します。
インポート	: Essential Macleod や Zemax OpticStudio のデーターをインポートします。
エクスポート	: Zemax OpticStudio のコーティングファイルを作成します。
終了(X)	: TFV を終了します。
● 編集	
і∎⊐ピー(選択されているも	ェル) : 選択されているセルの内容をクリップボードへコピーします。

■貼付(選択されているセル基点)	クリップボードの内容を、選択されているセルを基点に貼り付 けます。
■層をクリップボードへコピー(C)	層を選択してクリップボードへコピーします。
■クリップボードから層を貼付(V)	クリップボードヘコピーした層を選択した位置に貼り付けま す。
弖 層の挿入(Ⅰ)	設計データーに層を追加します。
➡予層の削除(D)	設計データーから層を削除します。
☞周期層の挿入(P)	設計データーに周期層を追加します。
☞周期層の削除(L)	設計データーから周期層を削除します。
周期層を展開	周期層を展開します。
⇄ 物理膜厚へ変換(全層)(T)…	全層の膜厚を物理膜厚へ変換します。
➡光学膜厚へ変換(全層)(O)…	全層の膜厚を光学膜厚へ変換します。
↓ 設計データーを他のシートへコピー(F)…	設計データーを他のシートヘコピーします。
	物理膜厚が変わらないように中心波長のみを変更します。
♦ 設計データークリア(Z)	設計データーを削除します。
▲設計データー⊐ピー(E) (表計算ソフト貼 付用)	設計データーをクリップボードにコピーします(タブ区切り)。 コピーした設計データーは、表計算ソフトなど他のアプリケー ションに貼付ができます。
↓↑ 層を反転(R)	層の上下を入れ替えます。
✓コメント編集(K)	設計データーのコメントを編集します。

● 表示

しし 波長グラフ(W) :	波長グラフ(波長 対 反射率・透過率・吸収・位相変化)を表示します。
✓入射角グラフ(A) : :	入射角グラフ(入射角 対 反射率・透過率・吸収・位相変化)を表示しま す。
3D波長・入射角複合グラフ:	波長・入射角の 3D グラフを表示します。
────────────────────────────────────	分散グラフ(波長 対 屈折率・吸収係数)を表示します。
^い 蒸着コントロール(E) :	蒸着コントロールグラフ(成膜時の光学モニターの光量変化グラフ)を表示 します。
▶ 電場強度分布(I) :	電場強度グラフを表示します。
▶●色計算(C) :	xy 色度図または a*b*色度図と、各表色系の数値を表示します。 色計算は、常に 380nm から 780nm まで 5nm 間隔で計算されます。
₩製造誤差解析(M) :	製造誤差グラフ(波長または入射角 対 反射率・透過率・吸収・位相変化) を表示します。 各層の膜厚・屈折率・吸収係数が設計値からズレた場合の、光学特性の 変化を解析する際に使用します。
群遅延 - スペクトル :	群遅延のスペクトルグラフを表示します。
群遅延 - 入射角 :	群遅延の入射角グラフを表示します。
	平行平面基板を複数積層した場合の多重反射の合計の特性計算のため のスタックウインドウを表示します。

シート選択

• <u>ツール</u>

S∰薄膜電卓(M) :	簡単な薄膜計算用のツールを起動します。 反射特性のピークから屈折率を計算、厚膜の 2 つの面の合計反射率計 算、3 層等価膜計算をおこないます。
<mark>0</mark> 2010日の最適化(Y) :	設計の最適化をおこないます。
[∩] k基板や単層膜の nk∶ 解析(N)	反射率や透過率の測定値から基板や単層膜の n,k を解析します。
MM 分散データー編集: (D)	分散データーを作成したり編集したりするのに使用します。
■不均質データー編集: (I)	不均質データーを作成したり編集したりするのに使用します。
■ウインドウ位置を記: 憶(W)	現在表示されているウインドウの位置とサイズを記憶し、次回から記憶した 位置とサイズで表示するようになります。
➤記憶したウインドウ位 [:] 置をクリア(X)	記憶したウインドウの位置とサイズをクリアします。
<u>∲</u> オプション(0) ∶	初期設定や各種動作設定をおこないます。

• ヘルプ

፟҈҈≫取扱説明書(pdf)	:	取扱説明書(pdf ファイル)を表示します。
^今 TFV ホームページ(W)	:	ブラウザを立ち上げて TFV ホームページを開きます。
♥バージョン情報(A)…	:	バージョン情報等を表示します。

5.1.2.<u>ツールバー</u>

メインメニュー内のよく使われる項目をツールバーに配置してあります。

- 👌 開く
- 🗟 再読込
- 🕌 名前を付けて保存
- 🔲 波長グラフ
- 🛂 入射角グラフ
- 3D 波長・入射角複合グラフ
- ≽ 分散グラフ
- 🤄 蒸着コントロール
- 📠 電場強度分布
- <table-cell-rows> 色計算
- Ы 製造誤差解析
- ^{GD}▼ GD
- 🕂 スタック
- ⁰れ設計の最適化
- ⁿk 基板や単層膜の nk 解析

Ь オプション

5.1.3.計算範囲·計算間隔設定

スペクトルの種類と単位、スペクトルと入射角の計算範囲、入射角特性と電場強度の計算対象スペクト ルを設定します。

ここでスペクトル範囲や入射角範囲を設定することで、波長グラフや入射角グラフの x 軸が変わります。

$\left(\right)$	スペクトノ	レの種業	頁 スペクトル(の単位	反射率(R)•透過率(T)	・吸収率(A)の)単位
	波長		✓ nm	~			R,T,A単位	>
スペクトル範囲→	3	80 -	780 step	1 _{nm}	詳細	適用	% 🗸	
入射角範囲→	0 -	60	step 1 deg	g, Ref=	500 _{nm}	リセット		<
	開始	終了	間隔(step)	角度特性 および 電場強度 計算対象	.スペクトル	適用ボタン リセットボタ	, ヌン	

スペクトルの種類と単位(上段)
 スペクトルグラフ、3D グラフ、製造誤差グラフの
 スペクトルの種類と単位を選択します。
 対応しているスペクトルの種類は右の表の通りです。

 スペクトル計算範囲(中段) スペクトルグラフ、3D グラフ、製造誤差グラフの スペクトル計算範囲を設定します。
 開始:スペクトル計算範囲の開始値 終了:スペクトル計算範囲の終了値 間隔(step):スペクトルの計算間隔(3D グラフの計算間隔は 3D グラフ上部で設定します)

スペクトルの種類	単位
波長	Å, nm, μ m, mm
周波数	PHz, THz, GHz
波数	cm ⁻¹ , μm ⁻¹ , 2π/cm
角周波数	rad/fs
エネルギー	eV, keV
g值	

上の図の設定例では、波長 380nm~780nm まで 1nm おきに計算します。

• 入射角計算範囲(下段)

入射角グラフ、3D グラフの入射角計算範囲を設定します。

開始 : 入射角計算範囲の開始値

終了:入射角計算範囲の終了値

間隔 : 入射角の計算間隔(3D グラフの計算間隔は 3D グラフ上部で設定します)

角度特性および電場強度計算対象スペクトル : 入射角特性と電場強度を計算するスペクトルを設定し ます。

上の図の設定例では、入射角 0°~60°まで 1°おきに、500nm の波長に対して計算します。

入射角度計算波長の設定は、電場強度計算波長の設定でもあるため、電場強度計算でも 500nm の波 長に対して計算します。

詳細ボタンを押すと、複数の波長範囲を設定できます。詳しくは、「3.4.21 スペクトル計算波長範囲を複 数設定する」を参照してください。

<u>設定を変更したら、適用ボタン✓を押してください。</u> 適用ボタンを押さないと、グラフや計算結果に反映されません。

● R,T,A 単位

スペクトルグラフ、入射角グラフ、3D グラフ、製造誤差グラフの反射率(R)・透過率(T)・吸収率(A)の単位 を選択します。対応している単位は、0-1, %, dB です。

5.1.4.<u>設計データー</u>

設計の中心波長、入射角、基板や入射媒質の種類、各層の膜厚・使用物質等を設定します。 20 のシート(Sheet1~Sheet20)が用意されており、一度に 20 までの設計データーを編集したりグラフに 表示したりできます。

Shee	et1 Shee	t2 Shee	t3 Sheet4	Sheet5	Sheet6	Sheet7	
Cent	er 5	00 📥 nm	n, Angle	0 🔺	deg		
Sub	strate N-E	3K7(SCH	OTT)	•			基板
	Thick	iness		n and k	profile		\uparrow \uparrow
No.	<u>nd/ λ</u>	nm	Material	dn	dk	不均質	
1	.2500	75.56	Al2O3	.0000	.0000		
2	.5000	121.97	ZrO2	.0000	.0000		
3	.2500	90.27	MgF2	.0000	.0000		J
							Ļ
							入射媒質
Med	lium 1			•			

Center	:	設計の中心波長(nm)
Angle	:	光線の入射角度(deg.)
Substrate	:	基板の種類 ドロップダウンリストから分散データーを選択するか、屈折率値を直接入力します。
No.	:	層の番号 No.1 が基板に接する層
Thickness	:	膜厚。光学膜厚または物理膜厚で入力します。
Material	:	膜物質の種類 ドロップダウンリストから分散データーを選択するか、屈折率値を直接入力します。
dn	:	屈折率補正値 Material で設定した膜物質の屈折率に対してここで設定した値が加算されます。
dk	:	吸収係数補正値 Material で設定した膜物質の吸収係数に対してここで設定した値が加算されます。
不均質	:	不均質の種類 ドロップダウンリストから不均質データーを選択します。
Medium	:	入射媒質 ドロップダウンリストから分散データーを選択するか、屈折率値を直接入力します。

● 周期層

Period から End まで(灰色の行で囲まれた部分)が1つの周期層になります。 Period の右側の数字が周期を表します。

周期の右側の数字は周期層内の膜厚の倍率を表します。Thicknessの値にこの倍率が掛けられます。 「3.4.13 周期層を設定する」も参照してください。

計算する種類の選択

メイン画面の一番下に並んでいるチェックボックスで計算する種類を選択します。 チェックを付けたものが、グラフや数値データーなどに表示されます。

🗹 Ra	🗌 Rs	□ Rp □ Ta □ Ts □ Tp □ 裏面
🗆 Aa	As	Ap ODa ODs ODp
🗆 Frs	🗌 Frp	→ □ dFr □ Fts □ Ftp □ dFt 選択解除
Ra	:	反射率(平均)
Rs	:	反射率 S 偏光(TE)
Rp	:	反射率 P 偏光(TM)
Та	:	透過率(平均)
Ts	:	透過率 S 偏光(TE)
Тр	:	透過率 P 偏光(TM)
Aa	:	吸収率(平均)
As	:	吸収率 S 偏光(TE)
Ар	:	吸収率 P 偏光(TM)
ODa	:	光学濃度(平均)
ODs	:	光学濃度 S 偏光(TE)
ODp	:	光学濃度 P 偏光(TM)
Frs	:	反射位相変化 S 偏光(TE)
Frp	:	反射位相変化 P 偏光(TM)
dFr	:	反射位相差
Fts	:	透過位相変化 S 偏光(TE)
Ftp	:	透過位相変化 P 偏光(TM)
dFt	:	透過位相差
裏面	:	裏面側からの入射光に対する計算

選択解除ボタンを押すと、 全ての選択が解除されます。 5.1.5.設計データー領域での右クリックメニュー

TFV					-		×
ファイル(E) 編集(E)	表示(⊻) シー	-ト選択(<u>S)</u> ツール	(II) ヘルプ(<u>H</u>)			
2	🤔 ခဲ့ 🔛 🖂 Y3D ≔ ိ∧ 🗽 🕨 🕂 O _R Nk 🎍						
波長	波長 🔹 nm 🔹 🔽 🗸 R,T,A単位 ,						>
3	80 - 7	780 step	1 nm	詳細	適用 9	6	
0 -	60 ster	o 1 de	eg, Ref=	500 nm	リセット		<
Sheet1	Sheet2 Sl	heet3 She	et4 Sheet5 Sh	eet6 Sheet	7 Sheet8	Sheet9 Sh	ie
Center	50	00 <mark></mark> nm, <i>I</i>	Angle	0 📑 deg			
Substra	ate N-BK7(SCHOTT)			~		
	Thick	ness		n and k profile			
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均質	
1	0.2500	75.56	AI2O3	0.0000	0.0000		
2	0.5000	121.97	ZrO2	0.0000	0.0000		
3	0.2500 90.27 MgF2 0.0000 0.0000						
							_
)
Marali							
Mediu	m				Ť		
🗹 Ra	Rs	Rp 🗌 Ta	a 🗆 Ts 🗌	Тр 🗌	裏面		
🗆 Aa	🗆 Aa 📄 As 📄 Ap 📄 ODa 📄 ODs 📄 ODp						
🗌 Frs	🗌 Frp 🗌	dFr 🗌 Ft	s 🗌 Ftp 🗌	dFt 選	択解除		

シート切替タブ、および セル上で右クリックすると、 ポップアップメニューが表示されます。

シート切替タブ上での右クリックメニュー
 シート切替タブ上で右クリックすると、次のようなポップアップメニューが表示されます。

↓ 膜データーを他のシートへコピー(F) い、 膜厚を変えずに中心波長変更(W)	
◇ 膜データークリア(Z) ↓ <td></td>	
↓↑ 層を反転(R)	
🌽 コメント編集(K)	

設計データーを他 の シート ヘコピー (F)…	:	設計データーを他のシートへコピーします。
₩膜厚を変えずに 中心波長変更(W)	:	物理膜厚が変わらないように中心波長のみを変更します。
[�] 設計データークリ ア(Ζ)	:	表示されているシートの設計データーをクリアし、シートを編集不可能な状態 にします。 ファイルに保存されている設計データーが消えるわけではありません。 シートを再び編集可能な状態にするには、設計データーの新規作成 かフ ァイルから設計データー読込 をおこないます。
▲設計データーコピー(E)(表計算ソフト 貼付用)	:	設計データーをクリップボードにコピーします(タブ区切り)。 コピーした設計データーは、表計算ソフトなど他のアプリケーションに貼付が できます。
↓↑ 層を反転(R)	:	層の上下を入れ替えます。
✓コメント編集(K)	:	設計データーのコメントを編集します。

設計データーのセル上での右クリックメニュー
 設計データーのセル上で右クリックすると、次のようなポップアップメニューが表示されます。

セル	
Ð	コピー(選択されているセル)
ß	貼付(選択されているセル基点)
層	
n.	この層をコピー(<u>C</u>)
ß	この層へ貼付(⊻)
39	ここに層を追加(1)
₽	この層を削除(<u>D</u>)
• =	ここに周期層を挿入(P)
<u>e</u>	この周期層を削除(L)
	周期層を展開
シー	•
\$	膜データーを他のシートヘコピー(<u>F</u>)
500 *600	膜厚を変えずに中心波長変更(<u>W</u>)
0	膜データークリア(Z)
Ð,	膜データーコピー(E) (表計算ソフト貼付用)
1 ‡	層を反転(<u>R</u>)
L	コメント編集(<u>K</u>)

іа⊐ピー(選択されている セル)	:	選択されているセルの内容をクリップボードへコピーします。
□ 貼付(選択されている セル基点)	:	クリップボードの内容を、選択されているセルを基点に貼り付けます。
ो この層を⊐ピー(C)	:	右クリックした層をクリップボードへコピーします。
□ この層へ貼付(∨)	:	右クリックした層ヘクリップボードの内容を貼り付けます。
	:	右クリックした層の手前に新しい層を 1 層追加します。
➡・この層を削除(D)	:	右クリックした層を削除します。
☞ここに周期層を挿入 (P)	:	右クリックした層の手前に周期層を追加します。 ダイアログボックスがあらわれ、周期層の層数と周期を設定できます。
₅この周期層を削除(L)	:	周期層を削除します。 このコマンドは、周期層の灰色の行を右クリックすると有効になります。
周期層を展開	:	周期層を展開します。
 		右クリックした層の膜厚を物理膜厚に変換します。 ※ 膜厚の表示形式が自動切替の場合のみ表示されます。
 		右クリックした層の膜厚を光学膜厚に変換します。 ※ 膜厚の表示形式が自動切替の場合のみ表示されます。
祥 物理膜厚へ変換(全 層)(T)	:	全層の膜厚を物理膜厚へ変換します。 ※ 膜厚の表示形式が自動切替の場合のみ表示されます。
컱 光学膜厚へ変換(全 層)(O)	:	全層の膜厚を光学膜厚へ変換します。 ※ 膜厚の表示形式が自動切替の場合のみ表示されます。
↓ ↓ ↓ した ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	:	設計データーを他のシートヘコピーします。
	:	物理膜厚が変わらないように中心波長のみを変更します。
◇設計データークリア(Z)	•	表示されているシートの設計データーをクリアし、シートを編集不可能な 状態にします。 ファイルに保存されている設計データーが消えるわけでけなりません。
		シートを再び編集可能な状態にするには設計データーの新規作成
		かファイルから設計データー読込合をおこないます。
		•••••••••••••••••••••••••••••••••••••••
■設計データー⊐ピー(E) [∶] (表計算ソフト貼付用)	設計データーをクリップボードにコピーします(タブ区切り)。 コピーした設計データーは、表計算ソフトなど他のアプリケーションに貼 付ができます。	
---	---	
<mark>↓</mark> 〕 「 」 「 】 『 】 『 」 … … … … … … … … … … … … …	層の上下を入れ替えます。	
✓コメント編集(K) :	設計データーのコメントを編集します。	

5.2. グラフウインドウ

5.2.1.<u>グラフ上での右クリックメニュー</u>

グラフ上で右クリックすると、次のようなポップアップメニューが表示されます。

🔛 書式設定(E)	
V ser ユーザーライン追加(<u>A</u>)	
◆ グラフからユーザーラインを削除(D)	
分光光度計測定ファイルからグラフへ追加(M)	
23 数値デーダー表示(N) かんデーターをクリップボードヘコピー(O)	
※ 図をファイルへ保存(S)…	
グラフのズームスクロールを戻す(<u>R</u>)	
このウインドウ位置を記憶(W)	
88 整列 →	
場所の入替	
	グラフの軸や系列の色を設定します。
└──ザーライン追加(A) :	グラフにユーザー定義の任意のラインを追加します。
	グラフに規格線を追加したり、分光器の測定データー等をグラフに表示
	したりするのに使用します。
	グラフからっ 一ザーライン た削除するための両面をまてします
▼クラノからユーサーライ	クリノからユーリーリーションを削除するための画面を衣示します。
ンを削除(D)	
一会会光光度計測定ファイル:	分光光度計ファイルを読み込んでグラフへ追加する機能を呼び出しま
	т стородини и слови стородини с на стородини с стородини и стородини с стородини с стородини с стородини с стор
▶ グラフから分光光度計デ 🔅	クラノから分光光度計ナーターを削除するための画面を表示します。
ーターを削除(X)	
¹ 23数値データー表示(N) :	計算結果(グラフのプロット)を数値で表示します。
かん かくしょう かくしょう しょう かくしょう しょう かくしょう いっかい いっかい いっかい いっかい いっかい いっかい いっかい いっか	計算結果の数値をクリップボードへコピーします(タブ区切り)。
	数値け タブ区切りのテキスト形式でクリップボードにつピーされます
	気には、ゲノビジンのノックイントルス(ノノノン・トービュビー これより。 ま社営いつしたじに形しけはスニレジズキナナ
	衣計昇フノトなとに、貼りりりのことかできます。
図をクリップボードへ :	グラフを図としてクリップボードへコピーします。
コピー(P)	他のソフトへ図を貼り付けることができます。
≧図をファイルへ保存(S)	グラフを図としてファイルに保存します。
グラフのズームスクロールを	グラフのズーム・スクロールを元に戻します。
アナイロン (P)	
■このウインドウ位置を記 :	このワイントワの位直とサイスを記憶し、火回から記憶した位直とサイ
憶(W)	ズで表示するようになります。
>記信 たらへいにら位置	記憶したこのウインドウの位置とサイズをクリアします。
をクリア(入)	
整列 :	波長グラフと入射角グラフの R,T,A,OD,Phase 別整列方法を選択しま
	す。
場所の入替・・	グラフを分割表示している場合に、反射率・诱渦率・吸収率・位相変化
	それぞれたどの位置に表示するかた地宁! ます
	てれてれてての世国に衣小するかで相圧します。

6. エラーメッセージと対処方法

エラーメッセージとその内容	原因	対処方法
Hardware key not found. ハードキーが見つかりません。	ハードキーを PC に取り付け ていない。	ハードキーを PC に取り付けてく ださい。
	違うハードキーを取り付けて いる。	TFV 用のハードキーを PC に取り付けてください。
	TFV を起動したまま、PC を スタンバイや休止状態にし た。	スタンバイや休止状態にすると ハードキーとの通信が途切れる ため、このエラーが発生します。 そのままキーを一旦取り外し、 再度取り付けてください。キーと の通信が再開し、エラーが解除 されます。
	PC のコネクターが故障して いる。	ハードキーを別のポートに取り 付けてみてください。 また、ハードキーの LED ランプ が点灯しているか確認してください。
	ハードキー 用ドライバ (Sentinel System Driver)の インストールが失敗してい る。	Sentinel System Driverを一旦 アンインストールしてから、イン ストール CD を使用して再インス トールしてください。正しくインス トールするにはハードキーを PC から 取り外しておく 必要がありま す。
	PC の不調	PC を再起動したり、別の PC に インストールしてみてください。
	ハードキーが故障している。	ハードキーの修理が必要です。
Error loading program. プログラム起動時に問題が発生し _ました。	TFV のプログラムファイルが 破損している。	TFV をインストール し直してください。
Error loading import library. インポートライブラリーがロードで きません。	TFV の動作に必要なファイ ルが存在していないか、破損 しています。	TFV をインストール し直してください。
Error importing library function. インポートライブラリー内の関数に アクセスできません。	TFV の動作に必要なファイ ルが破損しています。	TFV をインストール し直してください。

最新情報は TFV ホームページをご参照ください。 TFV ホームページ: <u>https://thinfilmview.com/</u>