

Version 3.4

https://thinfilmview.com/

© 2005 Eastwind Tsusho Inc.

[目次]

1	概要	要	5
2	安教	专方法	7
3	TFL	/ 的使用方法	8
	3.1	起動 TFV	8
	ງດ	 士泪窗韵明	0
	J.4	工代图远归	9
	3.3	計算內容說明	10
	3.3.		10
	3.3.	2 多乔山多·火汉射溥族的司异(Stack)	11
	3.4	膜資料操作	12
	3.4.		12
	3.4.		13
	3.4.	3	15
	3.4. 2.4	4	16
	5.4. ว 1	 5 吸收係數(()調査	1 <i>1</i>
	э. 4 . 2 л	0 小归马(加羽平科四)成足	90 10
	3.4. 3.7	7 00100千心放伎受史	20 91
	3.4	 ○ 浜序(G)(〒-交交叉) 「心液 (C)	21 22
	3.4	10 基板和入射介質變更	23
	3.4.	11 圖表結構種類(反射、透射、吸收、光密度、相移、偏振光)的變更	- 0 24
	3.4.	12 膜層追加、刪除、複製	25
	3.4.	13 周期層設定	26
	3.4.	14 光學膜厚與物理膜後的切換	27
	3.4.	15 工作表切換顯示其它膜資料	28
	3.4.	16 工作表切換標籤的選択	29
	3.4.	17 將膜資料複製至其他 Sheet	30
	3.4.	18 在膜資料附加註解	30
	3.4.	19 反轉膜層	31
	3.4.	20 計算範圍、計算間隔設定(光譜曲線圖、入射角曲線圖的 X 軸範圍變更)	32
	3.4.	21 複数設定計算光譜範囲	34
	3.4.	22 欄位的複製與貼上	35
	3.5	曲線圖的操作	36
	3.5.	1 曲線圖 Y 軸和系列色的變更(曲線圖格式設定)	36
	3.5.	2 追加使用者定義線	38
	3.5.	3 分光光度計測定資料顯示於曲線圖	40
	3.5.	4 圖的 Zoom、Scroll 機能	43
	3.5.	5 光譜田線圖·人射角曲線圖的操作	44
	3.5.	5.1 田線圖的分割表示	44
	3.5.	5.2	47
	3.6	各種計算功能的使用方法	48

3.6.1	光譜曲線圖	. 48
3.6.2	波入射角曲線圖	. 49
3.6.3	光譜、入射角複合 3D 圖表顯示	. 50
3.6.4	以曲線圖表示色散資料	.51
3.6.5	模擬光學式蒸鍍監控	. 53
3.6.6	電場強度分布表示	. 56
3.6.7	將反射光和穿透光的顏色數值化(顏色計算)	.57
3.6.8	製造誤差解析	. 60
3.6.9	同時顯示反面測的特性	. 65
3.6.10	群延遲	. 66
3.6.11	基板和薄膜的層壓計算(Stack)	. 68
3.6.11.1	Stack 構成的複製・貼付・反轉	. 73
3.6.11.2	Stack 視窗 Sheet 的選擇	.74
3.6.12	基板·媒質的內部透射率	. 75
3.6.13	用數值表示計算結果	. 76
37 是诸	6. 任继徐(1) 桓淮 MODE	77
3.7 gg/2	local search	82
3.7.1	Global search	.02 82
3.7.2	Needle search	. 02
374	最適化使用於各層設定	. 85
375	取過他使用於自信設定	. 85
0.1.0		.00
3.8 最速	創化機能(2) 手動 mode	.86
3.8.1	基本操作	. 86
3.8.2	表示複數系列時的動作	. 87
3.8.3	以滑鼠來加重	. 87
3.9 膜資	【料的新檔作成、讀取、儲存	.88
3.9.1	膜資料的新檔作成	. 88
3.9.2	從既存舊檔讀取膜資料	. 88
3.9.3	膜資料儲存	. 89
3.9.4	膜資料復原	. 89
3.9.5	與舊版本膜數據檔案的互換性	. 90
310 Pro	iect 的保友 · 讀取	91
3 10 1	Project的保存	91
3 10 2	Project 的 i 即	92
3.10.3	關閉 Project	.94
3.10.4	最近使用過的 Project	.94
3.11 計	算基	.95
3.11.1	計算無吸收的基板的折射率(n)	. 95
3.11.2	計算具有吸收作用的基板的折射率(n) · 吸收係數(k)和内部透射率(Ti)	. 98
3.11.3	單層 [腔的 nk 分析	101
3.11.3.1	nk 解析的注意點	104
3.11.4	單層金屬薄膜的 nk 計算	105

3.12	其臣	2功能	
3.1	.2.1 É	色散資料的作成	
3.1	.2.2 É	色散式的種類	
3.1	.2.3 7	下均勻資料作成・編輯	
3.1	.2.4 単	與其它軟體相連結(數值和圖的複製、貼上)	
3.1	.2.5 ³	尊入 Essential Macleod 數據	
3.1	2.6 Z	ZEMAX 玻璃數據導入	
3.1	.2.7 ^칯	尊出到 ZEMAX	
3.1	.2.8 🗄	主視窗的 Parameter 表示	
3.1	.2.9 暴	頤示 "Home" 按鈕‧將薄膜厚度恢復為初始值	
3.1	.2.10	薄膜計算用工具	
3.13	環境	竟設定	
3.1	.3.1 拶	操作設定	
3.1	.3.1.1	啟動	
3.1	.3.1.2	膜厚	
3.1	.3.1.3	光學定數	
3.1	3.1.5	圖設定	
3.1	3.1.6	光譜·入射角複合 3D 圖表設定	
3.1	3.1.7	蒸鍍 control 設定	
3.1	3.1.8	電場強度設定	
3.1	.3.1.9	顏色計算設定	
3.1	.3.1.10	製造誤差設定	
3.1	.3.1.11	相位和群延遲設定	
3.1	3.1.12	Stack 設定	
3.1	3.1.13	最適化設定	
3.1	3.1.14	其它設定	
3.1	3.1.15	語言設定	
4 初	期導入多	完畢的基板 data.膜物質 data	134

1 概要

特徴

直覺式操作,容易上手。 即時運算系統,立即顯示運算結果。 以滑鼠控制滑動尺、上下鍵,可快速變更膜厚、折射率。 多張標籤工作表,最多可同時設計五個膜資料。 多種光譜類型和單位。

功能

● 反射率、透射率、吸收率、光密度、相移、群延遲的曲線圖表示和數值表示。

光譜類型	單位
波長	Å, nm, µm, mm
頻率	PHz, THz, GHz
波數	cm ⁻¹ , μm ⁻¹ , 2π/cm
角頻率	rad/fs
能量	eV, keV
g-Number	

反射率、透射率和吸收率的單位	
0-1, %, dB	

相變和入射角的單位 deg.

群延遲類型
GD: 群延遲 Group Delay
GDD: 群延遲分散 Group Delay Dispersion
CDC: 色散係數 Chromatic Dispersion Coefficient
TOD: 三階分散 Third Order Dispersion
FOD: 四階分散 Fourth Order Dispersion
5OD: 五階分散 Fifth Order Dispersion

群延遲的單位	
fs, ps	

- 基板和膜物質的色散資料(n 和 k)以曲線圖和數值表示
- 光學式蒸鍍監控的模擬,能夠考量行徑因素、真空中的折射率的光學式蒸鍍監控。
- 電場強度分佈的圖和數值表示
- 顏色計算、色差計算

XYZxy, CIE L*a*b*, L*C*h, Hunter Lab, L*u*v*, UCS, Whiteness Index, Yellowness Index, sRGB, CIE2000, Dominant Wavelength

- 製造誤差解析:針對各層膜厚、折射率、吸收係數的增減,解析其光學特性的變化又或 Monte Carlo simulation
- 設計的最適化

Local Search

Global Search
Needle Search

波長曲線圖的分光光度測量資料檔案的讀寫表示機能。

Hitachi (UDSS, UDS, UDA, UV1 檔案)、Olympus-USPM 檔案、Shimadzu SPC 檔案、Jasco JWS 檔案、Ocean OpticsOOi-Base32 檔案、csv 檔案讀寫對應。相對測定 值變換為絕對值。

- 曲線圖追加使用者定義線
- 支援週期層
- 英日繁体中文語切換對應

規格

最大層數 5000 層(Sheet 內的行數至 5000 為止)

需要作業環境

·OS Windows® 10 或 11。 Home 或 Pro 版。 32bit 或 64bit 版。

*它不能在 Windows S 模式或 Qualcomm Snapdragon 處理器 (ARM 版本 Windows) 上運作。

*它不適用於 Windows XP。 *Windows Vista 尚未經過測試。 *不支援 Windows 7 和 8。

·CPU

Intel 或 AMD 處理器。 建議使用 Intel Core i5 或 AMD Ryzen5 或更高版本,4 核 8 線程或更多線程的 CPU。

·記憶

對於 32 位操作系統,最多使用 2GB 的 RAM。 對於 64 位操作系統,最多使用 4GB 的 RAM。 建議使用內存為 8GB 或以上 (與其他軟體一起使用時為 16GB 或以上)的 PC。

·屏幕分辨率

屏幕分辨率為 1024 x 768 或更高。 建議使用全高清 (1920x1080) 或更高。 推薦的屏幕具有高分辨率和大尺寸。

·存儲容量

磁盤空間容量為 100 MB 或更多。

·USB 端口

硬鍵連接需要一個 USB 2.0 或 3.0 的 TYPE A 端口。

2 安裝方法

從 CD-ROM 運行安裝程序或從網站 (https://thinfilmview.com/tw/userpage) 的客戶端訪問 頁面下載。

詳細的安裝說明,請參閱附件 Install Guide。

安裝於時,須由 Administrators 管轄下的使用者身份或電腦管理者身份登錄。

3 TFV 的使用方法

本章說明 TFV 的操作方法和功能介紹。 請一邊閱讀此手冊一邊實際操作 TFV·將會幫助您快速熟練此軟體的使用方法。

3.1 起動 TFV

以滑鼠左鍵點選桌面上的下列圖示, 連按兩下起動 TFV

(若是桌面上無此圖示,請至[開始]功能表→[程式集]→[ThinFilmView],選擇 TFV)

起動後,會出現 TFV 的主視窗和光譜視窗。

在主視窗上會出現預設的 3 層 AR coating 設計範例 · 光譜曲線圖視窗上則會顯示此設計範例 的曲線圖。

(*若是有錯誤訊息顯示·無法啟動 TFV 時·有可能是 Hard key 未連接上電腦、或是軟體安裝不完整等因素。此時請參考手冊末頁的「錯誤訊息的對應方法」)

3.2 主視窗說明

本章概略說明主視窗項目,詳細內容請參閱次頁。

設計資料可以註冊在 Sheet1 至 Sheet20 中。

3.3 計算內容說明

3.3.1 單一界面處薄膜的計算

使用主視窗中各 Sheet 的設計數據計算出的內容如下。

上圖主視窗 Sheet1 中顯示的設計資料的意義如下。

Substrate(基板)	SCHOTT BK-7	厚度:無限
基板上的第1層薄膜	Al2O3	膜厚 nd=0.25λ, d=75.56 nm
基板上的第2層薄膜	ZrO2	膜厚 nd=0.5λ, d=121.97 nm
基板上的第3層薄膜	MgF2	膜厚 nd=0.25λ, d=90.27 nm
Medium(入射媒質)	1(空氣)	厚度:無限
Center(設計的中心波長)	λ=500 nm	
Angle(光線的入射角)	0°	

如下所示的反射率顯示在光譜圖(Sheet1(Ra))上。

反射率 = 反射光 ÷ 入射光

3.3.2 多界面多次反射薄膜的計算(Stack)

Stack 允許您計算多個介面的總和。

TFV					_		● 光譜曲線圖 - □ ×
檔案(E) 編輯(E) 表示(V) Sheet選擇(S) 工具(I) 表示說明(H)					±)		🔢 曲線圖格式設定(E) 🦣 使用者定義線 🏾 🤔 分光光度計 👘 複製(C) 🖌 💭 其他 🗝
② 2 H U ✓ 3D > ¹ / ₁ h > U ♣ 0, ¹ / _k 4				n _k 🖕			5.0
波長		~ nm			V R	,T,A單位	4.5
3	80 -	780 step	1nm	Detail	適用	% -	- Stack1(Ra)
0-	60 st	en 1d	ea. Ref=	500 nm	重設		25
Sheet1	Sheet2	Sheet3 She	et4 Sheet5 S	heet6 Sheet	7 Sheet8	Sheet9 She	· 0.30
Center		500 🗄 nm, .	Angle	0 deg			\$ 3.0
Substra	ate N-BK	7(SCHOTT)			~		
	Thi	ckness		n and k p	rofile		15
No.	nd/λ	nm	Material	dn	dk	不均匀	1.5
1	0.250	0 75.56	AI2O3	0.0000	0.0000		1.0
2	0.500	0 121.97	ZrO2	0.0000	0.0000		0.5
3	0.250	0 90.27	MgF2	0.0000	0.0000		
						- V	200 400 420 440 460 460 500 520 540 560 560 620 640 660 660 700 720 740 760 76 波長 (nm)
		Stack					警告: 有效的光譜范里。[ZrO2] 400-800 nm
		編辑(E) She	eet)送择(≦)	0 10 11	12 12 14	15 16 17	
		1 2 3 ·				15 10 17 .	
		奉似 仙殊頁	しい数単	1	4 > >		
		入射角 (de	g):	0			
					Т	hickness(mm	
		入射媒質	§ 1				
Mediu	m 1	膜(前向) Sheet1				
🗹 Ra	Rs	基板 N-BK7(SCHOTT) 1 膜(反向) Sheet1 1			1		
🗆 Aa	As						
Frs	Frp	出射媒質	£ 1				
	p						
		🗹 Ra 🗌 I	Rs 🗌 Rp 🗌	🛛 Ta 🔲 Ts	🗆 Тр	□反面	
		🗆 Aa 🗌 /	As 🗌 Ap 🗌	🛛 ODa 🗌 OD	s 🗌 ODp	取消選取	

上面顯示的 Stack 視窗的含義如下。

入射媒質	1(空氣)	厚度:無限	
膜(前向)	主視窗 Sheet1 薄	膜 第1層是基板側	
基板	SCHOTT BK-7	厚度: 1 mm	
膜(反向)	主視窗 Sheet1 薄	膜 第1層是基板側	
出射媒質	1(空氣)	厚度:無限	
入射角	0 °		

光譜圖上的紅線(Stack1(Ra))顯示了下圖所示的反射率。

反射率 = 反射光 ÷ 入射光

在薄膜内,光會發生干涉。

在介質或基材內部 · 光線不會發生干涉並進行多次 反射 (因為較厚 · 所以不存在干涉)。

3.4 膜資料操作

3.4.1 膜厚變更

在 Thickness 列的欄位按滑鼠左鍵 · 欄下會出現滑動尺 · 欄右側出現上下鍵 · 以滑鼠拖曳滑動尺中央的游標即可改變膜厚 · 同時光譜圖的曲線也會同步顯示變化 ·

欄右側的上下鍵也有同樣功能。

如何使用鍵盤改變膜厚
 膜厚亦可用鍵盤來做變更,方法有兩種:
 (1)使用鍵盤移動滑動尺游標
 滑鼠左鍵點選滑動尺後,以鍵盤方向鍵來移動游標。
 使用滑動尺的不便之處在於膜厚的變更範圍只限於滑動尺兩端點之間。要解決這個問題,請使用第二個方法。
 (2)不使用滑動尺游標,以鍵盤改變膜厚
 滑鼠左鍵點選欄內數字後(請不要點選滑動尺),按住 Ctrl 鍵不放,以方向鍵來調整膜厚。

方 開 ∠ 延 和 送 欄 八 數 子 诿 (詞 个 妄 和 送 方 助 仄) · 按 住 C III 延 个 放 · 以 方 问 越 來 詞 空 誤 厚 。 放開 Ctrl 鍵後 · 再以上下方向鍵移動至上下 膜層 · 並依上述方法調整 膜厚 。 如此一來即可 不斷來回更改若干層的 膜厚值。

上述二種方法·都可使用 PageUp 鍵、PageDown 鍵·一次調整兩倍的膜厚變化量·方便快速變更膜厚。

若要恢復原先的膜厚(滑動尺游標位於中央位置時的膜厚) · 請按 Home 鍵。若要將調整過的膜厚設定為滑動尺游標在中央位置的膜厚時 · 請按 Enter 鍵。

3.4.2 選擇膜厚的表示形式

膜厚的表示形式可以從下列選擇出喜歡的表示形式。

膜厚列的表示	(1) 同時表示光學膜厚· <u>物理膜</u> 厚				
方法	Thickness Thickness				
	No. $\underline{nd/\lambda}$ Å No. \underline{QWOT} nm				
	1 .2500 755.6 1 1.0000 75.56				
	(2) 只表示光學膜厚				
	Thickness				
	No. nd/ λ No. QWOT				
	1 .2500 1 1.0000				
	(3) 只表示物理膜厚				
	Thickness Thickness				
	No. nm No. Å				
	1 75.56 1 755.6				
	(4) 自動切換表示光學膜厚・物理膜厚(先前版本的表示方法)				
	Thickness				
	No. nd/λ or Å				
	1 .2500				
	在自動切換表示之下輸入 10 以下的數值則自動判斷為光學膜厚;				
	輸入10以上的數值則自動判斷為物理膜厚。				
膜厚的單位	物理膜厚的單位:Å, nm, μm, mm				
	光學膜厚的單位: nd/ λ 或是以輸入 $\lambda/4$ 為 1 的 QWOT 単位				
	· ※ 選擇表示方法(4)時,物理障厚的單位固定為 · Å · 光学障厚的單位固				
	$rac{1}{2}$				
慢先	同時表不光學腜厚・物埋腜厚時,設定優先表不光學腜厚或物理腜厚 				

谢 選項		×
 飲動 薄膜厚度 	薄颜厚度設定 顕示列 1. 顯示光學薄膜厚度和物理薄膜厚度 厚度單位 光學膜厚 Full Wave Optical Thickness (nd/λ) 物理膜厚和中心波長 nm 優先	
死 間 語言	光學膜厚度	
		OK Cancel

● **計算的優先設定**

在選擇表示方法裡選擇[1.同時表示光學膜厚·物理膜厚]時·在[優先]欄請選擇優先表示光學 膜厚或是物理膜厚。

[優先表示光學膜厚時的動作]

變更中心波長與屈折率時,光學膜厚的表示值會被固定且物理膜厚會被變更。 在計算時會使用被表示的光學膜厚。

[優先表示物理膜厚時的動作]

變更中心波長與屈折率時,物理膜厚的表示值會被固定且光學膜厚會被變更。 在計算時會使用被表示的物理膜厚。

Ŭ TFV				×	
ファイル(E) 編集(E) 表示(Y) シート選択(S) ツール	(<u>I</u>) ヘルプ(<u>H</u>)				
🖄 🖻 🔛 🔽 3D 🦢 🖓 🗽 🐎 🖓 🕂 🖓	ⁿ k 🌵				
波長 🔽 nm 🔽		🗸 R,	,T,A単位		
380 - 780 step 1 nm	詳細	適用	%		
0 - 60 step 1 deg, Ref=	500 _{nm}	リセット	<		
Sheet1 Sheet2 Sheet3 Sheet4 Sheet5 Sh	eet6 Sheet7	7 Sheet8	Sheet9 She	e •	
Center 500 🚔 nm, Angle	0 📩 deg				
Substrate N-BK7(SCHOTT)		~			
Thickness	n and k pr	ofile			
No. <u>nd/λ</u> nm Material	dn	dk	不均質		被設定為優先的一方
1 0.2500 75.56 Al2O3	0.0000	0.0000			其膜厚單位欄會出現下底線
2 0.5000 121.97 ZrO2	0.0000	0.0000			
3 0.2500 90.27 MgF2	0.0000	0.0000			
Medium 1		~			
🗹 Ra 🗌 Rs 🗌 Rp 🗌 Ta 🗌 Ts 🔲	Tp 🗌 🛛	裏面			
Aa As Ap ODa ODs	ODp				
Frs Frp dFr Fts Ftp	dFt 選	択解除			

● 切換優先設定時的注意事項

切換優先設定時,根據膜厚表示值以下的小數點誤差在計算結果上會產生些微的誤差。

另外·根據同樣的理由·優先設定在不同的情況下保存膜 data 時與讀取 data 時·在計算結果上也會產生些微的誤差。

3.4.3 膜物質變更

在 Material 列的物質欄內按滑鼠左鍵‧欄右側會出現向下鍵‧按此鍵則會列出已登錄的膜物 質一覽(色散資料)‧請點選所需要的膜物質。若是內沒有所需要的膜物質選項‧亦可直接輸入折 射率數值。

● 例:將第三層的膜 MgF₂ 改為 SiO₂

滑鼠左鍵點選第三層的 MgF₂·按右側的向下鍵就會出現膜物質一覽·點選 SiO₂即可;而光 譜圖也會立即反映變更後的曲線。若再次點取 MgF₂·光譜圖則恢復原本曲線。

3.4.4 折射率微調整

在 dn 列的欄位按滑鼠左鍵‧欄右側會出現上下鍵。按向上鍵‧折射率增大;按向下鍵‧折 射率減小。在此可微調整 Material 欄內所指定的膜物質之折射率。

● 例:使第三層的 MgF₂ 折射率減少 0.02

滑鼠左鍵點選第三層的 dn 欄·按兩下向下鍵·欄內數值顯示-.0200·代表折射率降低 0.02。

在這個例子中 · MgF2 的折射率為 1.3848-0.0200=1.3648 (針對波長 500nm)

※ 按下按鍵時的曲折率增減量可改變為「3.13 環境設定」。

3.4.5 吸收係數微調整

在 dk 列的欄位按滑鼠左鍵 · 欄右側會出現上下鍵 · 按向上鍵 · 吸收係數增大;按向下鍵 · 吸收係數減小 · 在此可微調整 Material 欄內所指定的膜物質之吸收係數 ·

● 例:使第三層的 MgF₂ 吸收係數增加 0.01

滑鼠左鍵點選第三層的 dk 欄·按兩下向上鍵則欄內數值顯示.0100·表示吸收係數增加 0.01。

※按下按鍵時的吸收係數增減量可在「3.13環境設定」做變更。

3.4.6 不均匀(折射率斜面)設定

點選不均勻列欄位,欄位右側的按鍵將會顯示向下的拉軸。按下此按鍵,將會顯示已登錄的 不均勻資料一覽,故可選擇所希望之檔案資料

● 例:第2層的ZrO₂適用不均匀。

點選第2層的不均勻列欄位,按下向下的按鍵將會顯示已登錄的不均勻資料一覽。點選 Minus-1,第2層折射率於100Angstrom之處,n適用每回減少-0.005之負的不均質、光譜 曲線圖的構想也將變化。

若點選 none,不均質將解除。

	\downarrow
10 TFV - C X	 ● 光譜曲線圖 - □ ×
檔案(E) 編輯(E) 表示(V) Sheet選擇(S) 工具(I) 表示說明(H)	Ⅲ 曲線圖格式設定(E) Чझ 使用者定義線▼ 🤔 分光光度計▼ 🕒 複製(C)▼ 🔐 其他▼
🔊 🖻 🔛 😾 3D 🦢 հռ 🗽 🖓 🕂 🚱	5.0
波長 • nm • R,T,A單位 、	4.5 — Sheet1(Ra)
380 - 780 step 1 nm Detail 適用 % 🗸	4.0
0- 60 step 1 deg, Ref= 500 nm 重設 <	3.5
Sheet1 Sheet2 Sheet3 Sheet4 Sheet5 Sheet6 Sheet7 Sheet8 Sheet9 She*	<i>₢</i> 3.0
Center 500 nm, Angle 0 deg	₹ <u>2,5</u>
Substrate N-BK7(SCHOTT)	
Thickness n and k profile	15
No. <u>nd/λ</u> nm Material dn dk 不均匀	
1 0.2500 75.56 AI2O3 0.0000 0.0000	
2 0.5000 121.97 ZrO2 0.0000 0.0000 Minus-1	0.5
3 0.2500 90.27 MgF2 0.0000 0.0000	
	波長 (nm)
Medium 1	警告: 有效的光譜范圉。[ZrO2] 400-800 nm
☑ Ra 🗌 Rs 🗌 Rp 🗌 Ta 🗌 Ts 🗌 Tp 👘 反面	
🗆 Aa 🗌 As 🗌 Ap 📄 ODa 🗌 ODs 📄 ODp	
□ Frs □ Frp □ dFr □ Fts □ Ftp □ dFt 取消選取	第 2 層 · 以 Minus-1 作為適用被設定的不均勻。
[Ctrl+方向鍵(↑↓)][Page]: 改變值	曲線圖也將產生變化。

此例·ZrO2層適用負的不均勻·反射 特性的區域也將會擴大。 **※** Hint:

將游標放置在不均質的欄位上,將會跳出不均勻數據資料。

※注意:若不均勻層的膜厚指定為光學膜厚時,因不均勻層的折率 n 的變化,指定的光學膜厚與實 際的光學膜厚將有差異。

上記所設定的例子,對於第 2 層 Thickness 指定值為 0.5,實際值為 nd/ λ =0.4932。

	Thick	n and k profile					
No.	<u>nd/λ</u>	nm	Material		dn	dk	不均匀
1	.2500	75.56	Al2O3		.0000	.0000	
2	.5000	121.97	ZrO2		.0000	.0000	Minus-1
3	.25(nc	l/λ= 0.4932	(at 500.0nm)	1	.0000	.0000	
	a 不	= 121.9/ nm 均勻層	י				

※ 關於不均勻數據資料的新增、編輯,請參照「3.12.3 不均勻資料作成,編輯」。

3.4.7 設計的中心波長變更

中心波長的設計值可在下圖紅框標示的中心波長設定欄內指定。 按 Center 欄右側的上下鍵,即可改變中心波長。

TFV	,				-		×	
檔案(E) 編輯(E) 表示(Y) Sheet選擇(S) 工具(I) 表示說明(出)								
Ø 2 🗄 😡 ∽ 3D 〜 "∧ 🖿 🕨 🕂 Ψ₂ "k 🐠								
波長		~ nm	~		🗸 R	,T,A單位	>	
3	- 088	780 step	1 nm	Detail	適用	%		
0.	60 ste	o 1de	eg, Ref=	500 nm	重設			
Sheet1 Sheet2 Sheet4 Sheet5 Sheet6 Sheet7 Sheet8 Sheet9 She*								
Cente 500 m, Angle 0 deg								
Substr	ate N-BK7	(SCHOTT)			~			
	Thick	iness		n and k p	rofile			
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均气		
1	0.2500	75.56	AI2O3	0.0000	0.0000			
2	0.5000	121.97	ZrO2	0.0000	0.0000			
3	0.2500	90.27	MgF2	0.0000	0.0000			
Mediu	m 1				~			
🗹 Ra	Rs	Rp 🗆 Ta	a 🗆 Ts 📄	Tp 🗌	反面			
🗆 Aa	🗌 As 🗌	Ap 🗌 O	Da 🗌 ODs 🔲	ODp				
Aa	As Frp)Ap □O)dFr □Ft	Da 🗌 ODs 🛄 ts 🗌 Ftp 🔲	ODp dFt 取	消選取			

中心波長設定欄

左例中·膜厚為 0.25 時(第一、三層) nd/λ=0.25、設計的中心波長為λ=500nm· 因此光學膜厚 nd=0.25×500=125nm

※不改變膜厚·改變中心波長·請參照 「3.4.8 膜厚(d)不變變更中心波長」 3.4.8 膜厚(d)不變變更中心波長

上記「設計的中心波長變更」·中心波長變更時膜厚也將產生變化·但若膜厚不改變·中心 波長也可變更。

由 MENU 中、「編輯」-「₩₩膜厚(d)不變變更中心波長」·又或於 Sheet 名上按右鍵點選「₩₩膜厚(d)不變變更中心波長」。

輸入中心波長、點選 OK 後中心波長將會改變、為了讓膜厚不做變動「Thickness」欄的數 值將自動調整。

● 例 膜後不改變變更中心波長裡中心波長由 500nm 改為 600nm

中心波長(Center)由 500nm 變更為 600nm ·「Thickness」欄的數值將被調整。反射特性在中心波長變更前後幾乎一至。

3.4.9 光線入射角變更

光線的入射角可在下圖紅框所標示的入射角設定欄指定。 按 Angle 欄右側的上下鍵,可改變入射角。

有效的輸入範圍為 0 到 89.9999 度。

😈 TFV	,			- 🗆 🗙
檔案(E)	編輯(E) 表	示(<u>V</u>) Sheet選擇(<u>S</u>) 工具(I) 表示說明(H)	
2	🗄 😡 🛂 30) 😑 հ 🗽 🕨 🕂 📴	n _k 🌢	
波長		👻 nm 🕑		R,T,A單位 >
3	380 - 7	80 step 1 nm	Detail 適月	₹ % -
0 -	- 60 step	1 deg, Ref=	500nm 重調	× <
Sheet1	Sheet2 Sh	eet3 Sheet4 Sheet5 SI	seet6 Sheet7 Sh	eet8 Sheet9 She*
Center	r 50	0 <mark>:</mark> nn Angle	0 🗧 deg 🗕	
Substr	ate N-BK7(S	SCHOTT)		~
	Thickr	ness	n and k profile	e
No.	<u>nd/λ</u>	nm Material	dn d	lk 不均匀
1	0.2500	75.56 Al2O3	0.0000 0.	0000
2	0.5000	121.97 ZrO2	0.0000 0.	0000
3	0.2500	90.27 MgF2	0.0000 0.	0000
Mediu	ım 1			~
🗹 Ra	Rs 🗆	Rp 🗌 Ta 🗌 Ts 🗌	Tp □反面	ī
🗆 Aa	🗆 As 🛛	Ap 🗌 ODa 🗌 ODs 🗌	ODp	
🗆 Frs	🗆 Frp 🛛	dFr 🗆 Fts 🗆 Ftp 🗔	dFt 取消運	取

入射介質側

基板側

3.4.10 基板和入射介質變更

基板和入射媒介分別於下圖紅框所標示的欄位指定。

按右側的向下鍵會出現已登錄的基板色散資料一覽表。色散資料按字母順序排列。基板種類 繁多,此時只須輸入開頭幾個字母,即可快速找到所需要的基板。

😈 TFV					
檔案(E)	編輯(E) 表示(V)	Sheet選擇(<u>S</u>) 工	.具(I) 表示說明(<u>出</u>)	
📂 🖻 🕻	🗄 🔛 🔀 3D 🦢 🖓	ւ Ուս ⊳ 🖵 🕂 🤇	o _{pt} n _k 🍐		
波長	<u> </u>	m 🔄		F	R,T,A單位
3	80 - 780 ste	p 1 nm	n Detail	適用	%
0 -	60 step	1 deg, Ref=	500 nm	重設	
Sheet1	Sheet2 Sheet3 S	Sheet4 Sheet5	Sheet6 Sheet	7 Sheet8	Sheet9 She*
Center	500 🗧 ni	m, Angle	0 🗧 deg		
Substra	ate N-BK7(SCHOT	TT)		-	
	Thickness		n and k p	orofile	
No.	<u>nd/λ</u> nm	Material	dn	dk	不均匀
1	0.2500 75	.56 AI2O3	0.0000	0.0000)
2	0.5000 121	.97 ZrO2	0.0000	0.0000)
3	0.2500 90	.27 MgF2	0.0000	0.0000)
Mediur	m 1			~	
🗹 Ra	Rs Rp	🛛 Ta 🗌 Ts	🗆 Tp 🔹	反面	
🗆 Aa	As Ap	ODa 🗌 ODs	ODp		
🗆 Frs	Frp dFr	🛛 Fts 🗌 Ftp	」dFt 取	(消選取	
l l					

● 例:將基板改為石英(Quartz)

按 Substrate 欄右側的向下鍵會出現基板一覽表,在鍵盤上直接輸入 qu 則自動選取 Quartz 基板。

而光譜曲線圖也會立刻顯示變更後的曲線。您可以按 Enter 或按一下箭頭來關閉清單。

U TFV	- 🗆 🗙	U TFV	– 🗆 🗙	U TEV	– – ×
檔案(E) 編輯(E) 表示(M) Sheet選擇(S) 工具(I) 表示說明(H) ② ② 🔐 😡 🛂 3D 〜 \Λ 🗽 🗸 🕂 0, 1 k 🍐		檔案(E) 編輯(E) 表示(M) Sheet選擇(S) 工具(E) 表示說明(H) ② ② 🔛 😡 💙 3D 〜 \Λ 🗽 🔈 ↔ 0, 0k 🍐		檔案(E) 編輯(E) 表示(V) Sheet選擇(S) 工具(E) <u>③</u> ② 🔛 🛄 🌱 3D 〜 \ _{\\} \\\\	表示說明(H) k 🍐
送長 nm Detail 講 0 60 step 1 deg, Ref = 500 nm I 0 60 step 1 deg, Ref = 500 nm I 0 60 step 1 deg, Ref = 500 nm I Sheet1 Sheet3 Sheet3 Sheet3 Sheet3 N=BXF64(SCHOTT) N=BXF64(SCHOTT) N=BXF64(SCHOTT) N=BXF05(SCHOTT) N=N=RXTHISCHOTT) N=RXTHISCHOTT) N=RXTHISCHOTT) N=RXTHISCHOTT) 2 N=BX105(SCHOTT) N=RXTHISCHOTT) N=RXTHISCHOTT)	▼ RTA單位 8月 後 - ↓ 8月 8日 ↓ 8日 ↓	22 元 100 00 100 100 100 100 100 100 100 10	RTA單位 > % · · · · · · · · · · · · · · · · · ·	Bit Bit <td>Detail. 第月 RLA單位 週月 % * 500 nm 第後 * 0 使 * * 0 deg * * n and k profile * * 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000</td>	Detail. 第月 RLA單位 週月 % * 500 nm 第後 * 0 使 * * 0 deg * * n and k profile * * 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
N-72(ScHOTT) Medium N-FK51(SCHOTT) ■ Ra N-FK51A(SCHOTT) ■ Ra N-FK51A(SCHOTT) ■ Ra N-FK54A(SCHOTT) ■ Frs N-FK54(SCHOTT) ■ Frs N-KF9(SCHOTT) ● Frs N-KF9(SCHOTT) ● Frs N-KF9(SCHOTT)		C-363.23(MCARI) (C-363.23(MCARI) Medium QF1(CDGM) ■ Ra QF2(CDGM) QF5(CDGM) □ Frs QF8(CDGM) 街街車信雪 QF50(CDGM)		Medium 1 ■ Ra Rs Rp Ta Ts Tī Aa As Ap ODa ODS ■ Frs Frp dfr Fts Ftp d ff#r≑值可直接能入	▶ 反面 DDp IFt 取消選取
安向下鍵出現膜物質一覽	\rightarrow	輸入 qu		→ 按 Enter 鍵閣	閣閉清單

同樣地·Medium 欄的入射介質也可依照上述方式改變。且預設當入射介質為空氣時·以1 顯示。

若是想使用的基板種類不在一覽表上,則可直接輸入折射率。

入射介質始終以吸收係數 (k) = 0 進行計算。

3.4.11 圖表結構種類(反射、透射、吸收、光密度、相移、偏振光)的變更

在主視窗最下方有許多不同的圖標選項可供選擇。

	,				_		\mathbf{x}	
一 // // // // // // // // // // // // //	/ / / / / / / / / / / / / / / / / / /	三元(A) Show	ot湿惺(S) 工目/T) ま示分明/				
波長		nm		IN .		R,T,A單位		
3	380 -	780 step	1 _{nm}	Detail	適用	%	~	
0-	60 ste	p 1de	eq, Ref=	500 nm	重設			
Sheet1	Sheet2 S	heet3 She	et4 Sheet5 Sh	eet6 Sheet	7 Sheet8	Sheet9 S	he [*]	
Center	- 5	00 nm, /	Angle	0 deg				
Substr	ate N-BK7	(SCHOTT)			~			
	Thick	ness		n and k p	orofile			
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均匀		
1	0.2500	75.56	Al2O3	0.0000	0.0000)		
2	0.5000	121.97	ZrO2	0.0000	0.0000)		
3	0.2500	90.27	MgF2	0.0000	0.0000)		
Mediu	m 1				~			
🗹 Ra	Rs C	Rp 🗆 Ta	a 🗆 Ts 🔲 '	Tp 🗌	反面			
🗆 Aa	As	Ap 🗆 O	Da 🗌 ODs 🗌 (ODp				
🗌 Frs	🗆 Frp 🗌	dFr 🗆 Ft	ts 🗌 Ftp 🗌 (dFt 取	x消選取			
)		
					$\overline{}$			
					\sim			
					圖栖和	丶 臿粄宖	宁	
					凹小木小	王尔叹		

電腦預設值已將 Ra(反射率的 S 偏振光 P 偏振光之平均值)勾選,曲線圖也會顯示對應的圖標曲線。

反射率(s 和 p 的平均) Ra : Rs 反射率 s 偏振光(TE) Rp 反射率 p 偏振光(TM) 透射率(s 和 p 的平均) Та 透射率 s 偏振光(TE) Ts 透射率 p 偏振光(TM) Тр Aa 吸收率(s 和 p 的平均) 吸收率 s 偏振光(TE) As 吸收率 p 偏振光(TM) Ap ODa 光密度(s 和 p 的平均) ODs 光密度 s 偏振光(TE) ODp 光密度 p 偏振光(TM) : Frs : 反射相移變化 s 偏振光(TE) Frp 反射相移變化 p 偏振光(TM) : dFr : 反射相移差(Frs-Frp 或 Frp-Frs) Fts 透過相移変化 s 偏光(TE) 透過相移変化 p 偏光(TM) Ftp 透過相移差(Fts-Ftp 或 Ftp-Fts) dFt 反面 : 計算由反面測得的入射光

● 例:將 Rs(反射率的 S 偏振光)和 Rp(反射率的 P 偏振光)顯示於圖上

勾選 Rs(反射率的 S 偏振光)和 Rp(反射率的 P 偏振光)的方框 · 圖上會出現 Ra、Rs、Rp 三條曲線。入射角 0°時 · 三條曲線會相重疊 · 所以我們先將入射角設為 30°。

※可以透過雙擊圖形或使用「曲線圖格式設定」來變更圖形的 Y 軸 (垂直軸)。請參閱曲線圖 操作章節 · 變更 Y 軸的設定。

3.4.12 膜層追加、刪除、複製

在主視窗的欄內按右鍵會出現膜層複製·追加·刪除目錄,可以容易地複製、追加、削除膜層。

・例

【 膜層數追加】 想在第 2 層和第 3 層中間追加膜層時・ 請在第 3 層按右鍵・ 選擇 [[]]●插入膜層]。

【 膜層數刪除 】 要刪除第 3 層時 · 請在第 3 層按右鍵 · 選擇 [[➡ 刪除膜層]。

【膜層的複製】

選擇[1]複製此膜層]·膜層情報將複製至複製欄內。 按右鍵點選下一個欲複製的對象·選擇[1]貼付此膜層]後複製欄的內容將會貼上。

【一次複製複數的膜層】

由 MENU 中、「編輯」--選擇「圖將膜層複製至複製欄」。選擇開始膜層與結束膜層開始層後,點選 OK。

接著「編輯」-選擇「圖由複製欄中選取貼付」後,選擇貼附層。

選擇膜層	×	選擇貼付開始膜層
開始膜層: 結束膜層: 1 ~ 2	~	貼附膜層: 2 ~
OK Cancel		OK Cancel

此例為第1層、第2層,將第1層、第2層的內容個別複製至第2層,第3層。

週期層

3.4.13 周期層設定

在上節提到的膜層追加 · 刪除目錄中 · 選擇[季插入週期膜層]就會出現周期層插入的對話視

笝	۰

0	
插入位置 插入位置 3 → 層數 週期 2 ● 2 ●	置 : 層的 No.(此範例為在第 3 層前插入周期) 周期層内層數 周期層周期 鍵後・就會插入週期層(如下圖所示)
OK Cancel ITV - × 檔案(D) 編輯(D) 表示(X) Sheet選擇(S) 工具(D) 表示(X) fl(x) & ※ ※ ② ② ③ ③ ③ ③ ○ ¹ / ₂ Sheet3 [S(x) 1 + 0 + 1 k & ※ ※ ③ 80 - 780 step 1 nm ● tall. ※ ※ ○ 60 step 1 deg, Ref= 500 nm 1 & ※ ~ Sheet1 Sheet3 Sheet4 Sheet5 Sheet6 Sheet7 Sheet8 Sheet9 She Center 500 - nm, Angle 0 - deg 3 Substrate N-BK7(SCHOTT) - n and k profile dn dk of 不均匀 0.0000 0.0000 2 0.5000 121.97 ZrO2 0.0000 0.0000 0.0000 0.0000 2 0.5000 75.56 Al2O3 0.0000 0.0000 0.0000 0.0000 2 0.5000 75.56 Al2O3 0.0000 0.0000 0.0000 0.0000 2 0.5000 75.56 Al2O3 0.0000 0.0000 0.0000 0.0000 2 0.5000 60.98 ZrO2 0.0000 0.0000 0.0000 0.0000 4 0.2500 60.98 ZrO2 0.0000 0.0000 0.0000 0.0000 Medium 1 - - - - A a As Ap ODa ODs ODp ODp - DF DF	灰色兩行所夾的部分(Period ~ End)即為周期層。 Period 右欄的數字表示周期。滑鼠左鍵點選此欄 會出現上下鍵,可更改周期。 此範例中膜層構造如下所示: 基板/Al ₂ O ₃ /ZrO ₂ /Al ₂ O ₃ /ZrO ₂ /Al ₂ O ₃ /ZrO ₂ /MgF ₂ /Air 週期 週期層(週期:2)
● 周期層倍率設定 ● TV ■ RTA單位 素示(0) Sheet题探(5) 工具(0) 表示题明(1) ② P ③ P ③ P ④ P ④ 表示题 (1) ③ P ③ P ⑥ Sheet题探(5) 工具(1) 表示题明(1) ③ P ⑥ Step 1 deg, Ref= 500 nm ■ 20 Sheet1 Sheet2 Sheet3 Sheet4 Sheet5 Sheet6 Sheet7 Sheet8 Sheet9 She. Center 500 mm, Angle 0 deg Substrate N-BK7(SCHOTT) ■ Thickness n and k profile No. nd/A nm Material dn ■ Thickness n and k profile No. nd/A nm Material dn ■ Thickness n and k profile ■ Period: 2 0.900 2 0.2500 60.98 ZrO2 0.0000 0.0000 P1 End P2 Period: 2 0.900 3 0.2500 60.98 ZrO2 0.0000 0.0000 P2 End 5 0.2500 85.48 SiO2 0.0000 0.0000 P2 End 5 0.2500 85.48 SiO2 0.0000 0.0000 P2 End S 0.2500 85.48 SiO2 0.0000 0.0000 P3 End S 0.2500 85.48 SiO2 0.0000 0.0000 P4 End S 0.2500 85.48 SiO2 0.0000 0.0000 P5 En	要刪除週期層,請將滑鼠移到灰色部份按右鍵, 選擇[๋๋๋๋━̂ffl除週期層]。 可設定週期層內的膜厚倍率。 左例中,倍率1.10、10週期的週期層與倍率0.90 的相同,10週期的週期層互相重疊。 倍率要乘以週期層內的膜的厚度。 例如、倍率1.10, Thickness為0.25× 1.10=0.275,倍率0.90時則為0.25×0.90=0.225 利用此機能便能夠不需一個個變更厚度,就能以同 樣的規則一次變更厚度。 倍率
□ Frs □ Frp □ dFr □ Fts □ Ftp □ dFt 取消選取	

3.4.14 光學膜厚與物理膜後的切換

由 MENU 中、「編輯」-「➡轉換成物理膜厚(全層)」·「➡轉換成光學膜厚(全層)」、 又或、在膜層點選右鍵所跳出的選象中,選擇「➡將此膜層變換為物理膜厚」·「➡將此膜 層變換為光學膜厚」·「➡變換為物理膜厚(全層)」·「➡變換為光學膜厚(全層)」·很容易的能從 由光學膜厚←→物理膜厚間互換。

※ 由於有小數點的誤差,變換時圖表的數值將會有些微落差。又,轉換回原來所選時,膜 厚也將會有些為的落差。

3.4.15 工作表切換顯示其它膜資料

TFV 最多可同時於圖上顯示 5 個膜資料。方便相互比較進行膜設計。

從檔案列表中選取 Samples 資料夾開啟→點取 AR 資料夾開啟→AR 膜 Sample 一覽。點選 檔案 5L-1 後按 [開啟] 開啟檔案。檔案資料會顯示在 Sheet2 和曲線圖上。

※兩條曲線的顏色相同會難以分辨·請在圖上連按滑鼠左鍵兩下·選擇曲線圖格式設定功能來更改顏色。

3.4.16 工作表切换標籤的選択

要選擇隱藏的 Sheet 時·點擊[卷軸按鈕]會表示出 Sheet 的列表從列表中點擊要切換的 Sheet 或是點擊[Sheet 選擇選單]選擇想要切換的 Sheet。

😈 TFV								
檔案(E)	編輯(E) 表:	示(⊻) S	heet選擇(<u>S)</u> 二具(I) 表	表示說明(L	Ð			
22	🗄 😡 🗙 3D	1	Sheet1					
波長		~	Sheet2: [Empty]		🗸 R,	T,A單位		
3	80- 7	80 st	Sheet3: [Empty]		適用 9/	5		
0-	60 step		Sheet4: [Empty]	\nearrow	~	and a		
Choot1	Chaot2 Ch	oot2	Sheet5: [Empty]	Sheet				
Sheet i Sheet2 Sheet3			Sheet6: [Empty]			·		
Center 500			Sheet <u>7</u> : [Empty]		猩			
Substra	ate N-BK7(S	CHC	Sheet8: [Empty]			+-		
	Thickn	ess	Sheet9: [Empty]	nd k pr	ofile			
No.	nd/λ	nn	Sheet10(a): [Empty]	1	dk	不均匀		
1	0.2500	7	Sheet11(b): [Empty]	1000	0.0000			
2	0.5000	12	Sheet12(c): [Empty]	000	0.0000			
3	0.2500	9	Sheet13(d): [Empty]	000	0.0000			
			Sheet14(e): [Empty]					
0.55 10		_	Sheet15(f): [Empty]					
Mediu	m 1		Sheet16(g): [Empty]		2			
🗹 Ra 🗌 Rs 🗌 Rp			Sheet17(h): [Empty]		反面			
🗌 Aa	🗆 As 👘	Ар	Sheet18(i): [Empty]					
Frs	Frp	dFr	Sheet19(j): [Empty]	取	消選取			
			Sheet20(k): [Empty]					

Sheet 中若無膜 data 時,會表示 [Empty]

3.4.17 將膜資料複製至其他 Sheet

將編輯中的膜資料複製至其他 Sheet 時 · 由 menu「編集」-選擇「臺將膜資料複製至其他 Sheet」· 在 sheet 的 tab 按右鍵 · 跳出的選項中選取「臺將膜資料複製至其他 Sheet」· 已顯示如下圖所示 · 故只要選擇複製對象、欲複製處後按 OK 鍵即可。

將獎資料複製至其他SHEET
由:
Sheet1
目的地:
Sheet2
<u>Q</u> K <u>C</u> ancel

3.4.18 在膜資料附加註解

在膜資料附加註記、由 MENU「編集」-選擇「✔編輯註解」、或在 Sheet 的 tab 按右鍵、 跳出的選單中選擇「✔編輯註解」。

已顯示如下圖所示,故只需輸入註解,按「OK」鍵既可。

若按「追加日期」,將會在當下的日期裡插入註解。

10 註解	_		×
Sheet1			
Sheet1的評論			<u>^</u>
<			>
添加日期和時間	<u>O</u> K	Car	ncel

註解將會如下圖所示,當游標指向 Sheet 名時將會出現。

😈 TFV							
檔案(E)	編輯(<u>E)</u> 才	表示(<u>V</u>) Shee	et選擇(<u>S</u>) 工具((I) 表示說明(H)		
🤔 🖻	1 😡 🛂 3	o 🚝 🗸 🕪	. ⊳ 🖵 🕂 Օրլ	n _k 💩			
波長		🔄 nm	~		🗸 P	t,T,A單位	>
3	80 -	780 step	1 nm	Detail	適用	%	
0	60 etc	1 de	eg, Ref=	500 nm	重設		
Sheet 1	Sheet2 S	heet <mark>8</mark> She	et4 Sheet5 S	heet6 Sheet	7 Sheet8	Sheet9 Sl	he [*]
Center	fSheet1] Sheet1 的調	_{平論} : nm, /	Angle	0] deg			
Substr	te N DK7	(CCHOTT)			~		
	Thick	ness		n and k p	orofile		
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均匀	
1	0.2500	75.56	AI2O3	0.0000	0.0000		
2	0.5000	121.97	ZrO2	0.0000	0.0000		
3	0.2500	90.27	MgF2	0.0000	0.0000		
Mediu	m 1				¥		
🗹 Ra	Rs C	Rp 🗆 Ta	a 🗆 Ts 🗌	Тр 🗌	反面		
🗆 Aa	As [Ap 🗆 O	Da 🗌 ODs 🗌	ODp			
🗆 Frs	Frp	dFr 🗆 Fi	ts 🗆 Ftp 🗌	dFt 取	(消選取		

3.4.19 反轉膜層

膜層的上下互換、由 Menu「編集」-選擇「↓」反轉膜層」·在 Sheet 的 tab 按右鍵·跳出的選單中選擇「↓」反轉膜層」。

如下圖所示,膜層上下關係互換。

※ 若有設定不均勻時·將無法反轉完整全部的膜層。例如·如果有設定負的不均勻的膜層·就算反轉·負不均勻也依舊維持原狀。

3.4.20 計算範圍、計算間隔設定(光譜曲線圖、入射角曲線圖的 X 軸範圍變更)

主視窗上側的工具列和工作表標籤之間有一淡綠色區塊,可設定、計算間隔。上層設定光譜 範圍,下層設定下列提到的入射角曲線圖中的入射角範圍。

在光譜範圍設置欄中,可以設置光譜類型和單位,以及光譜計算範圍。支持的光譜類型和單位如下。

光譜類型	單位
波長	Å, nm, µm, mm
頻率	PHz, THz, GHz
波數	cm ⁻¹ , μm ⁻¹ , 2π/cm
角頻率	rad/fs
能量	eV, keV
g-Number	

在入射角範圍設置欄中,可以設置入射角特性的計算範圍。入射角的單位是度。 (入射角 90 度將計算為 89.9999 度。)

😈 TFV							×
檔案(E)	編輯(E) ま	€示(⊻) Shee	et選擇(<u>S</u>) エ	具(I) 表示說明	l(H)		
				1. IIt. A.			
波長		 nm 			V 1	t,T,A單位	>
3	- 088	780 step	1 nm	Detail	適用	%	
0-	60 ste	p 1de	eg, Ref=	500 nm	重設		
Sheet1	Sheet2 S	heet3 She	et4 Sheet5	Sheet6 Shee	et7 Sheet8	Sheet9 S	he *
Center	r 51	00 <mark>::</mark> nm, A	Angle	0 <mark>-</mark> de	g		
Substr	ate N-BK7	(SCHOTT)			~		
	Thickness n and k profile						
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均匀	
1	0.2500	75.56	Al2O3	0.0000	0.0000		
2	0.5000	121.97	ZrO2	0.0000	0.0000		
3	0.2500	90.27	MgF2	0.0000	0.0000		
Mediu	ım 1				¥		
🗹 Ra	Rs 🗌	Rp 🗆 Ta	Ts 🗌	Пр	反面		
🗆 Aa	As 🗌	Ap 🗆 O	Da 🗌 ODs	🗆 ODp			
🗆 Frs	🗆 Frp 🗌	dFr 🗆 Ft	s 🗌 Ftp	🗌 dFt 🔢	取消選取		1

上述設定為,波長範圍 380nm~780nm,間隔以 1nm 計算。

※ 更改設置後,按"應用"按鈕。 在您按下"應用"按鈕之前,它不會反映在計算結果中。

● 例:將波長範圍變更為 300~800nm

於「開始波長」、「終了波長」鍵入 300、800,按下適用鍵,則波長圖的 X 軸變為

光譜間隔、角度間隔愈小的話,計算愈精細,但是計算時間也較長,曲線圖可能需要一些時 間反應;反之間隔愈大所需計算時間愈短,但曲線則較不平滑。

※其它區域的變更皆能同步反映於曲線圖上·唯有此淡綠色區塊的變更·須按「適用鍵」後曲線圖才會進行變更。

3.4.21 複数設定計算光譜範囲

按下光譜範圍指定欄的「Detail...」會表示出計算分光特性的光譜範圍之詳細設定畫面。可以跳著設定光譜範圍、或者在每個範圍可以設定不同的間隔。

波長		nm	~		
- 380	780	step	1 _{nm}	Detail	. 適用
0 -	60 step	1 de	g, Ref=	500 nm	重設

1	1 計算	波長的高級設置		
C	夠開啟2	舊檔(<u>O</u>) 🕌 另存新机	當(<u>A</u>)	
	Use	開始波長(nm)	終了波長 <mark>(nm)</mark>	波長間隔 <mark>(nm)</mark>
Þ	\checkmark	300	800	1
	\checkmark	2000	5000	10
	\checkmark			
	〕清晰	<u>व</u> 複製(<u>C</u>) <u></u> 粘上	(Y) 🚰 插入(I) 📑 冊	削除(<u>D</u>)
			ОК	Cancel
您	可以為約	每個範圍設置不同的波	2.長范圍或不同的波長	間隔。

計算光譜詳細設定画面

指令	功能
開啟舊檔	開啟保存於檔案的設定內容。
另存新檔	將設定內容保存於檔案中。
Use	使用有設定 Check 標記的行,
	沒有設定 Check 標記的行不會使用。
清除	清除表的內容。
行生	複製表的內容到剪貼板上。
	可以複製到表計算 Soft 等。
8년 년	在表貼上剪貼板的內容。
	可以由表計算 Soft 等來貼上。
τπλ	在目前的行(左邊有標示三角待號的行)上方插入空白
1四八	行。
刪除	刪除目前的行(左邊有標示三角符號的行)。

一般使用的設定為在「3.13.1.1 啟動」的計算範圍欄的設定·起動本軟體時適用自動的 設定內容。

3.4.22 欄位的複製與貼上

可以選擇欄位複製與貼上設計的 data

如下圖用滑鼠或是[Shift+箭頭]鍵選擇想要複製的欄位。

	Manufacturing error			
On	delta_T	Unit	delta_n	Unit
•	1.00	%	1.00	%
 ✓ 	1.00	%	1.00	%
	1.00	%	1.00	%

無法用滑鼠選擇以複選框為基準點的欄位。
請從反方向的欄位開始用滑鼠或是[Shift+箭頭]鍵
選擇。

從主選單選擇[編輯]-[將選定的單元格複製到剪貼板]或是點擊右鍵選擇選單裡的[將選定的單元格複製到剪貼板]或輸入 Ctrl+c 就可以將選擇的範圍內容複製到剪貼版。

於希望貼上內容欄位的左上方欄位點擊右鍵,選定按下[從剪貼板黏貼到單元格]或輸入 Ctrl+v 就可以把希望複製的內容貼上。

3.5 曲線圖的操作

3.5.1 曲線圖 Y 軸和系列色的變更(曲線圖格式設定)

曲線圖格式設定可以設定 Y 軸的最大最小值、幅度(Grid)、系列色變更等等。(X 軸則只能設定幅度(Grid),其最大最小值於主視窗設定。)

使用曲線圖的書式設定機能·曲線圖視窗的工具箱內選取「醫格式設定」又或在曲線圖視窗 按右鍵·從跳出的視窗選項中選擇[醫曲線圖格式設定]·或在曲線圖視窗點擊兩下。

【軸的設定】

此視窗可設定 X 軸的幅度(Grid)、Y 軸最大最小值·幅度(Grid)、第二 Y 軸最大最小值。勾選「自動」方框,電腦會自動調整讓所有圖標皆能於圖上出現。

※ 若幅度(Grid)設定較小或曲線圖較小時, 電腦會忽略設定值並自動調整。

※ X 軸的(光譜範圍及入射角範圍)最大最小值無法在此設定,須在主視窗的計算範圍內設定。

(詳細請參閱前述 3.4.20 計算範圍、計算間隔設定(光譜曲線圖、入射角曲線圖的 X 軸範圍變 更)

【系列色的設定】

可設定每個系列的顏色。選擇系列,選擇顏色、形式、線幅後按 OK 鍵,顏色將會改變。若 是無中意的顏色,請按顏色作成(Custom)自行調配喜歡的顏色。

「撥長曲線圖的書式設定,有「將設定複製到入射角曲線圖」按鈕,入射角曲線圖的書> 式設定,有「將設定複製到光譜曲線圖」按鈕。若按「將設定複製到入射角曲線圖」, 光譜曲線圖的系列色的設定將會複製至入射角曲線圖設定處。若按「將設定複製到光譜 曲線圖」,想反的,入射角曲線圖的系列色的設定將會被光譜曲線圖複製。若想將光譜 曲線圖與入射角曲線圖皆使用相同的系列時,使用上將會較為便利。

【設定保存】

「以初期值做保存」鍵可以保存目前的軸和顏色設定·待下次再啟動 TFV 時·曲線圖將會以 目前的軸和顏色設定顯示。

若是沒有按「以初期值做保存」而按 OK 鍵的話 · 此設定只能推持至 TFV 結束為止 · 待下次 再啟動時 · 又會恢復原來的預設值 ·

下頁將舉例說明。
● 例:自動調整Y軸最大值

由於初始狀態的 Y 軸設定為 0~2.5% · 因此要表示穿透率時 · 會因為超出曲線圖範圍而不會 顯示 · 為了不使圖標超出範圍 · 我們可以將 Y 軸最大值設定為自動調整 ·

勾選 Y 軸(R,T,A)最大值的[Auto]框再按下 OK 鍵,就會自動將 Y 軸調整至圖標不會超出曲線 圖範圍之最大值。

🍑 曲線圖格式設定				×
	光譜曲線圖設	定		
系列		軸		
- Sheet1 R R Rp Ta Ts Ty Aa As Ap ODa ODe	色 颜色作成 樣式 線的幅	X軸 波長 (nm) 幅度 Y軸 R, T, A (%) 最大值 最小值 幅度 ④ 倒軸		助
ODp		State of a		
r		LIN 2711	相信曲保	友
將設定複製於λ 射角曲	線圖	OK		15

● 例:變更系列色

試著將 Sheet1 Ra 的顏色改為黃綠色。

從清單中選擇 Sheet1-Ra,選擇黃綠色,然後按 OK 鍵, Ra 的曲線就變為黃綠色。

🔮 TFV					_		● 光譜曲線圖			—	
檔案(E)	編輯(<u>E)</u> 表	示(<u>V</u>) She	et選擇(<u>S</u>) 工具	(I) 表示說明	(<u>H</u>)		111 曲線圖格式設定(E) User 使用	者定義線 🕶 赺 分光光度計	-▼ 📄 複製(C)▼ 🖓 ม	ten.	
🔁 🖻 🕻	li 😡 🛂 31	o 〜 ∿∧ In	ռ ⊳ 🖵 🕂 Օթլ	n _k 🥧			新 曲線圖核式設定			n v	
波長 3 0-	80 - 7	nm 780 step 1 d	= 1 nm eg, Ref=	Detail 500 nm	▲ 月 通用 重設	\$, T,A單位 > % ▼ <	系列	光譜曲線圖設定	軸 X軸 波長 (nm)	自動	Sheet1(Ra)
Sheet I	Sneet2 Sr	neets Sne	et4 Sneet5 S	neeto Sneet	I/ Sheeta	Sneet9 Sne	Ra		幅度	0 🗄 🔽	
Center	50	00 - nm,	Angle	0 deg			Da				
Substr	ate N-BK7(SCHOTT)			~		кр	■ 顏色作成	Y軸 R, T, A (%)	白動	
	Thick	ness		n and k p	profile		Te	様式	最大值	5	
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均匀	Tn	v	最小值		r i i
1	0.2500	75.56	AI2O3	0.0000	0.0000		Aa	線的幅	版作用		
2	0.5000	121.97	ZrO2	0.0000	0.0000		As	v	111度		
3	0.2500	90.27	MgF2	0.0000	0.0000		Ap		□11到車田		0 740 760 700
							ODa				0 740 760 780
Mediu 🗹 Ra	m 1 Rs	Rp 🗆 T	a 🗆 Ts 🗌	Тр	<u>、</u> 反面		ODs ODp		☑ 顯示圖例		
🗆 Aa									■以初	期值做保存	
🗆 Frs	🗆 Frp 🗌	dFr 🗆 F	ts 🗆 Ftp 🗆	dFt D	x消選取		將設定複製於入射角曲	線圖	QK	Cancel	J

3.5.2 追加使用者定義線

曲線圖上可以追加使用者定義的任何曲線,如:設計目標線或規格線等;還能複製表計算軟 體的數據貼於圖上,如:複製分光光度計的測定資料,貼於圖上以曲線圖表示。 在曲線圖中追加使用者定義線,曲線圖視窗的工具箱中選擇「使用者定義線」-「**騙**追加使

用者定義線」,或在線圖視窗上按右鍵所跳出的視窗項目中選擇「攝追加使用者定義線」。

● 系列選擇

輸入前先選擇追加的系列。使用者定義線在曲線圖中最多可出現 10 條。

● 系列名

系列名是以曲線圖的常例做使用。空白放置也無影響。

● Plot data 的輸入方法

X 列依遞增輸入 X 軸的值。若是光譜圖則輸入光譜; 角度圖的話則輸入角度。

Y 列輸入 Y 軸的值。如反射率、透射率等。

輸入的每一座標點會以直線相連,若兩點座標間空隔一行的話,此兩點間不會相連。

data 也可以複製到剪貼簿貼上。請預先把 X 軸置換為遞增的順序再按 ^{□ 貼上(P)} 鍵貼上。(資 料貼上時需以 Tab 鍵隔開)

按下方的行插入[插入].行刪除鍵[刪除],進行插入或刪除行。

Date 由1開始重新輸入時請按消除按鍵。

種類

選擇反射率,透射率,吸收率,相位變化的類型。

● 系列色

請選擇系列的顏色、形式、線幅。

● 顯示於曲線圖

按「在曲線圖顯示」按鍵,使用者定義線將顯示在曲線圖。若想顯示其他的使用者定義線時,選擇欲接續系列、輸入資料,再按「在曲線圖顯示」按鍵。

● 由曲線圖中刪除

選擇欲消除的系列,按「由曲線圖刪除」按鍵後由曲線圖中刪除。

● 使用者定義線資料的檔案保存 · 及由檔案讀寫

製成的使用者定義線資料存入檔案中,方便重複讀寫。儲存,在資料作成後,按「保存」 鍵,輸入檔名儲存。儲存檔案讀寫,選擇系列後按「打開」鍵,選擇欲讀取之檔案。 ● 例:

鍵入如下資料,按下追加鍵,就會在曲線圖上出現如下圖所示的紅線。

此範例中·在波長 430nm、450nm 和 600nm、660nm 之間有插入空白行·所以圖上的紅線在 430nm、450nm 和 600nm、660nm 之間就不會連接。

※ 上面的範例—可視用 AR 膜規格線 sample · 已事先儲存於檔案。按下開啟舊檔打開 Sample(VIS).usl 檔案夾 · 即可讀取。

3.5.3 分光光度計測定資料顯示於曲線圖

讀寫分光光度計測定資料來,將可顯示於坡長曲線圖。

對應的檔案形式為 · Hitachi (UDSS, UDS, UDA, UV1 檔案) · Olympus-USPM 檔案 ·

Shimadzu SPC 檔案、Jasco JWS 檔案、Ocean OpticsOOi-Base32 檔案、csv 檔案、Tab 段落 text 檔案。

讀寫分光光度計測定資料檔案·顯示於光譜曲線圖·圖表視窗的工作箱中選擇「分光光度計」-「合由分光光度計測定檔案中追加加入圖表」·又或在圖表視窗按右鍵從跳出的選項中選取「合由分光光度計測定檔案中追加加圖表」。

打開檔案會顯示檔案視窗,選擇預讀取之檔案。或按 Ctrl 鍵或 Shif 鍵再選取檔案時,可同時讀取複數的檔案。

● 系列選擇

讀取複數的系列時,在此欄中選擇欲其在光譜曲線圖中出現的系列。

● 相對值變換為絕對值換

測定值為相對值時,勾選此方塊將可變換為絕對值。測定時請從 List 中選擇當參照用的基板。

種類

選擇反射率,透射率,吸收率,相位變化的類型。

● 曲線圖中追加

若按「曲線圖中追加」,在預覽中將會顯示內容於光譜曲線圖。 若光譜曲線圖中已有追加資料時,此資料並不會消失並且追加顯示。

● 消除後追加

按「消除後追加」鍵,若光譜曲線圖中已有追加資料時,在預覽中將會顯示內容於光譜曲線圖。

TFV					-		♥ 光譜	×
檔案(E)	編輯(E) 表:	示(<u>V</u>) She	et選擇(<u>S</u>) 工具((I) 表示說明((日)		Ⅲ 曲線■	線圖格式設定(E) Чыт使用者定義線▼ 🤔 分光光度計▼ 📄 複製(C)▼ Сыт其他▼
🕑 🖻 🕻	🗄 😡 🛂 3 🛛	<u>الا ∧ ا ⇒</u>	n 🔈 🎝 🕂 🗛	n _k 🍐			5.0	.0
波長 3	80 - 7	nm 80 step	<mark>↓</mark> 1 nm	Detail	✓ 適用	R,T,A單位 % _	4.5 4.0	.5 ————————————————————————————————————
0 -	60 step	1 d	eg, Ref=	500 <mark>nm</mark>	重設	<	3.5	.5
Sheet1	Sheet2 Sh	eet3 She	et4 Sheet5 Sl	heet6 Sheet	7 Sheet	8 Sheet9 She	°	.0
Center	50	0 <mark></mark> nm,	Angle	0🖶 deg			€ 2.5	5
Substr	ate N-BK7(S	SCHOTT)			~		⊢` ≃`2.0	.0
	Thickr	less		n and k p	orofile		15	5
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均匀	1.0	
1	0.2500	75.56	5 AI2O3	0.0000	0.000	0	1.0	
2	0.5000	121.97	ZrO2	0.0000	0.000	0	0.5	.5 SpeetrometerSample
3	0.2500	90.27	MgF2	0.0000	0.000	0	0.0	.0 687 nm, 0.994867788 %
							3	380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 波長 (nm)
Mediu	m 1				~		警告:有交	有效的光譜范圍。[ZrO2] 400-800 nm
☑ Ra 🗌 Rs 🗌 Rp 🗌 Ta 🗌 Ts 🗌 Tp 🗌 反面					反面			
Aa As Ap ODa ODs ODp								Hint: 游標指向其中,將會顯示附近
🗆 Frs	🗌 Frp 🗌	dFr 🗌 F	ts 🗌 Ftp 🗌	dFt 取	7消選取			
								福 条的數值。

如此一來,既可將使用分光光度計分光光度計測定的資料與設計值放於同一曲線圖做比較。

● 由曲線圖上的分光光度計資料刪除

將光譜曲線圖中顯示著分光光度計資料刪除,在曲線圖視窗的工具欄內選擇「分光光度計」 -「◆由曲線圖上的分光光度計資料刪除」,曲線圖視窗按右鍵後跳出視窗選裡再選擇「◆由 曲線圖中刪除分光光度計資料」。

在欲刪除系列的方格中勾選既能將其刪除。

🔰 刪除分光光度計資料線			×
系列選擇			
選擇全部(<u>A)</u> 取消選	擇(<u>U</u>)]	
<u>O</u> K <u>(</u>	<u>C</u> ancel		

• CSV 檔案、標籤分隔文字檔案格式

可讀取的格式如下: 波長[分隔符]測量值 波長[分隔符]測量值 波長[分隔符]測量值

• •

也支援多重測量:

波長[分隔符]測量值 1[分隔符]測量值 2[分隔符]測量值 3 波長[分隔符]測量值 1[分隔符]測量值 2[分隔符]測量值 3 波長[分隔符]測量值 1[分隔符]測量值 2[分隔符]測量值 3

分隔符: 支援逗號(,)或 Tab 字元。
波長單位:nm
測量值單位:%
波長數量:軟體上未設限制。
數據數量:軟體上未設限制。

您可以在標頭行中指定系列名稱: 某文字[分隔符]系列名稱 某文字[分隔符]系列名稱 1[分隔符]系列名稱 2[分隔符]系列名稱 3

即使檔案頂部有多行文字,也會跳過這些行,直到讀取到波長和測量值的行。 波長和測量值行之上的第一行將被視為標頭行。

支援波長升序和降序排列。 字元編碼會自動識別。

3.5.4 圖的 Zoom、Scroll 機能

使用 Zoom 機能·在圖上將滑鼠左鍵按住往右下方拖曳·選定想要放大的範圍後·再放開滑 鼠左鍵。

3.5.5 光譜曲線圖・入射角曲線圖的操作

3.5.5.1 曲線圖的分割表示

從工具列右端的選擇框中選擇顯示格式。

● Merge (序列重疊顯示)

若軸的種類達到三種或以上,則無法選擇。

Vertical

Horizontal

Tile

Tile1

• Tile2

● 初期設定

TFV 起動時可以設定要用什麼方法表示。

於[啟動設置]之[光譜曲線圖和入射角曲線圖的 R,T,A,OD,Phase 別整列方法]來設定。

10 選項	
启文動	啟動設定
 > 湾限厚皮 	計算範圍 光譜範圍 ● 設置單個光譜 Type 波長 單位 nm
	験資料文件 放動時開設檔案 Sheet1.flm R,TA單位 % ・ 光譜曲線圖與入射角曲線圖的R,TA,OD,Phase別整列方法
	OK Cancel

3.5.5.2 曲線圖的替換

在曲線圖分割表示時可以指定反射率·透過率·吸收率·相位變化分別表示在什麼位置。 在想替換表示位置的曲線圖上點擊右鍵從跳出的選單中選擇[Exchange place]。 再從跳出的項目中選擇想替換的對象。

例: 替換反射率與透過率的曲線圖
 在反射率的曲線圖上點擊右鍵選擇[Exchange place]-[與透過率替換]。
 如同下圖所示曲線圖替換了。

● 位置的記憶

關於要記憶替換位置時 · 在任意的曲線圖上點擊右鍵選擇[Exchange place]-[Remember the current place] 。

反射率 · 透過率 · 吸收率 · 相位變化分別的表示位置就會被記憶起來 · 下次啟動時就會表示出被記憶的位置 ·

3.6 各種計算功能的使用方法

3.6.1 光譜曲線圖

按下主視窗上光譜曲線圖工具列的人一按鍵會出現光譜曲線圖。

您可以在上圖中的紅色框中設定光譜類型、單位和計算範圍。 支援的頻譜類型和單位如下。

光譜類型	單位
波長	Å, nm, μm, mm
频率	PHz, THz, GHz
波數	cm ⁻¹ , μm ⁻¹ , 2π/cm
角頻率	rad/fs
能量	eV, keV
g-Number	

更改紅框中的部分後,按一下「套用」按鈕即可執行計算並將其反映在圖表等上。

可以在上圖藍框「R、T、A單位」設定反射率、透射率、吸收率的單位。 單位可以從 0-1、% 和 dB 中選擇。

暗示:

從選單設定薄膜厚度單位:[工具]-[設定]-[薄膜厚度]-[厚度單位]。 中心波長單位與物理膜厚度單位相關聯。

3.6.2 波入射角曲線圖

按下主視窗上入射角曲線圖工具列的┘按鍵會在光譜曲線圖下面出現入射角曲線圖。

上圖紅框中可以設定計算範圍和計算目標光譜(參考波長)。 更改紅框中的部分後,按一下「套用」按鈕即可執行計算並將其反映在圖表等上。

可以在上圖藍框「R、T、A單位」設定反射率、透射率、吸收率的單位。 單位可以從 0-1、% 和 dB 中選擇。

3.6.3 光譜、入射角複合 3D 圖表顯示

光譜、入射角的 3D 圖表顯示,點選工作列的光譜、入射角複合圖表3D鍵。 欄位中顯示的膜資料的光譜,大射角特性將會以 3D 圖表顯示。

3.6.4 以曲線圖表示色散資料

按下主視窗工具列的色散曲線圖三按鍵會出現色散資料曲線圖。

曲線圖會顯示所選擇的工作表(Sheet)所使用的基板物質的折射率、以及吸收係數曲線。Y軸 代表折射率,第二Y軸代表吸收係數。在計算光譜範圍內為0的情況下,吸收係數不會顯示。

如果設計數據中使用了 dn 或 dk,則繪製的 n 和 k 值將包含 dn 和 dk。 如果不希望包含 dn 和 dk,請點擊工具列上的「忽視 dn 和 dk」。

要更改Y軸範圍或系列色·曲線圖格式設定來更改。 要更改X軸(光譜範圍)·請在主視窗的光譜計算範圍變更。 切換主視窗上不同的工作表·則曲線圖會顯示所切換工作表的曲線。

3.6.5 模擬光學式蒸鍍監控

按下主視窗工具列的蒸鍍控制¹加按鍵,會在主視窗下方,將蒸鍍監控的光強變化以曲線圖顯示;另外,主視窗會向右延伸出「蒸鍍控制資料編輯區」。

曲線圖的左側起為第一層、第二層、第三層·綠色的直線表示膜層分界。 曲線圖的右側中會顯示 Start, Peak, Stop 的數值情報。 根據設定·表面反射測光·反面反測測光·透過測光的切換是有可能的。

通常監控的膜厚和製品基板的膜厚會不同,且設計上的折射率(大氣中)和成膜中(真空中)的折射率也不一樣。而 TFV 軟體則能考慮上述問題進行模擬。

•	蒸鍍控制資料編輯區各項目說明	月
---	----------------	---

Monitor	:	膜厚監控片的種類
Tooling	:	Monitor glass 和製品基板的膜厚比 (Tooling =基板上的膜厚/Monitor 上的膜厚)
dn	:	折射率補正值(成膜中的折射率補正) Material 設定的膜物質折射率·會再加上此項的設定值
dk	:	吸収係数補正(成膜中的吸収係数補正) Material 設定的膜物質吸収係数,會再加上此項的設定值
Filter	:	在光學測光使用的干涉濾光片的波長(nm)
Start	:	光學測光的開始光強。指定 0 的話·會以上一層的最終光強為開始光強
MG	:	MonitorGlass 使用位置 由同種的 MonitorGlass 層疊成膜時,指定相同的號碼

設定機能の説明

蒸着 controll 視窗的工具欄中選擇「設定」將會出現以下的設定畫面。

選項	×
 啟動 薄膜厚度 別:外學常數 滑動形與上下鍵 圖曲線圖 3D 3D圖表 承茲握控制 ● 顏绝計算 Q,最適化 其他 語言 	茶着control設定 光學測光方式 1.反面反射測光 「人町」 「「」」 「」
	OK Cancel

● 光学測光方式

可由以下4種測光方式中選擇。

● 入射角

上圖的日中請輸入適合的角度。

MonitorRingStep

為光亮計算的單位。數值越小越能縝密計算。但若過於精密將會花相當的時間·故一般請選擇 0.01 或 0.001。

● MonitorGlass 的厚度

請出輸入 MonitorGlass 的厚度。若 Glass 沒有吸收時就無需輸入。

顯示曲線圖時,主視窗的控制資料亦會顯示

指定當蒸鍍控制曲線圖顯示時,主視窗是否顯示蒸鍍控制資料編輯區。打勾則顯示,同時,蒸鍍控制曲線圖關閉時蒸鍍控制資料編輯區也會自動關閉。

● Stop%計算時 · 也使用相同 MonitorGlass 前的層的 Peak

例如·第1層與第2層用相同的 MonitaGlass·第2層有一個 peak 又或無 peck·使用第 1層的最終 Peck 去計算第2層的 Stop%時所附有的勾選選項。

若沒有勾選·第2層將單獨計算 Stop%。

配合始用的成膜來做選擇。

例:有勾選時

以第1層的 Peak 65.92 與第2層的 Peak 來計算時,第2層的 Stop%則為 37.68%。

Stop(%) = 100 * (LastPeak-Stop)/(2ndLastPeak-LastPeak)

-ight Intensity

Light Intensity

3.6.6 電場強度分布表示

曲線圖右側的 List 中,可選擇欲顯示的偏光種類。

平均(s,p)	:	s 偏光,p 偏光的平均
S	:	s 偏光(y 成分)
p(x+z)	:	p 偏光的合計(x 成分+z 成分)
рх	:	p 偏光的 x 成分(對於膜面 · 平行的成分)
pz	:	p 偏光的 z 成分(對於膜面 · 垂直的成分)
反面	:	由反面側入測時電場強度

※ 根據選擇「反面」,由表面側的入射光與反面測的入射光電場強度將可同時顯示。

切換主視窗上不同的工作表,則曲線圖會顯示所切換工作表的電場強度曲線。

3.6.7 將反射光和穿透光的顏色數值化(顏色計算)

按下主視窗工具列的顏色計算→按鍵,可將反射光、穿透光等的顏色以數字表示。 能表示 xy 色度圖、a*b*色度圖,或各種表色系數值。 選擇士視察下方的 Pa Pc Pp Ta Tc Tp 等項、會計算該項的數值,並表示曲線和數

選擇主視窗下方的 Ra, Rs, Rp, Ta, Ts, Tp 等項, 會計算該項的數值, 並表示曲線和數字。 顯示所有工作表的計算結果, 因此能夠計算各膜資料之間的色差。

● 顏色計算的各項	目說明
視場	:可以選擇 2 度(CIE 1931)或 10 度 (CIE 1964)視場
光源	:選擇光源種類
色差計算的基準	:選擇計算色差時的基準資料 適用於含二個以上的計算結果
色度圖	:指定 XYZ 表色系的 xy 色度圖或 L*a*b*表色系的 a*b*色度圖
數值資料	:選擇所表示的數值資料種類 可以表示 XYZxy, CIE L*a*b*, L*C*h, Hunter Lab, L*u*v*, UCS, Whiteness Index, Yellowness Index, sRGB, CIE2000, Dominant Wavelength

表色系統	色度	色差
XYZ(Yxy)	. 三刺激值 X, Y, Z,	
(CIE1931,CIE1964)	· 色度 x, y	
	. 三刺激值 Xn, Yn, Zn,	
	· 色度 xn, yn	
L*a*b*(CIE1976)	: 明度 L*,色度 a*b*	dE*ab
	明度 L*,	色相差 dH*,
L*C*h*	: 彩度 C*,	dL*, dC*,
	色相角 h(deg)	色差 dE94
Hunter Lab	: L, a, b	dEh
L*u*v*(CIE1976)	: L*, u*, v*	dE*uv
UCS(CIE1976)	: u', v'	
Whitenace Index	_ WI E313 (只光源 C,2-deg.,反射率)	
whiteness muex	[・] WI CIE (只光源 D65,反射率)	
Vallownoss Indov	_ YI E313 (只光源 C,2-deg,反射率)	
renowness muex	· YI D1925 (只光源 C,2-deg)	
sRGB	: R, G, B	
CIE2000	: -	dE2000
	λd: Dominant Wavelength(主波長)	
Dominant	. λc: Complementary Wavelength(補色主波長)	
Wavelength	· pe: Excitation Purity(激發純度)	
	pc: Colorimetric Purity(色度純度)	

● 顏色計算的種類說明

● 計算波長範圍和設定間隔

從主視窗 Menu 中·選擇[工具] - [選項] - [顏色計算]·您可以選擇 「360-830nm, 1nm 間距」、「380-780nm, 1nm 間距」、「380-780nm, 5nm 間距(既定值)」 3 種類型。

如果配色函數、光源、反射率和透射率等數據不包含整個選定的波長範圍時,或者如果波長 間隔不同時,則通過線性插值計算數據。

🤨 選項	
飲助 薄拠厚度 ・失学常数 パ勢以見上下鍵 ●給展園 = 20原表 > 32続控制 電協強度分布 ●構築指載 電協強度分布 ●構築指載 電協加 電路加 第24 第24 第24 第3 第4 第4 第3 第4 章 第4 第5 第5 第 第4 第4 第5	
	計算設置 計算波長袍頭和間隔 380-780m,問題 5mm * 360-830m,問題 1mm 380-780m,問題 1mm 580-780m,問題 5mm OK Cancel

● 註冊用戶創建的配色函數

配色函數數據文件儲存於 TFV 安裝文件夾的 Color\CMF 文件夾中(路徑通常為 C:\TFV)。 xyz2.csv 是 CIE1931 的配色函數, xyz10.csv 是 CIE1964 的配色函數。

参考預先註冊的配色函數數據文件,用戶可以創建自己的配色函數數據文件,並將其保存在 Color\CMF 文件夾中。重新啟動 TFV 後,您可以在視場的組合框中進行選擇。

● 對應的光源種類

對應 A, B, C, D50, D55, D65, D75, E, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, ID50, ID65 的各種光源。

可以註冊用戶創建的光源數據。

● 註冊用戶創建的光源

光源數據文件儲存於 TFV 安裝文件夾的 Color\LS 文件夾中(路徑通常為 C:\TFV)。 参考預先註冊的光源數據文件(例如 A.csv 和 D65.csv),用戶可以創建自己的光源數據文件,並將其保存在 Color\LS 文件夾中。

重新啟動 TFV 後,您可以在光源的組合框中進行選擇。

● 分光光度計 Data、使用者定義線 data 的色計算

把在光譜曲線圖上表示的分光光度計數據、使用者定義線數據的色計算結果表示在色計算画面上。

3.6.8 製造誤差解析

啟動製造誤差解析機能,請點工具欄的製造誤差解析。 某層的膜厚、折射率、吸收係數的誤差,於調查會對光學特性會造成多少程度影響時及調查 設計值與實際成形薄膜的光學特性的乖離發生在哪一層時(M)(Mismatch 解析)、及依據 Monte Carlo simulation 調查製造變異時(製造誤差解析)使用。

主視窗的製造誤差解析參數

項目 項目内容	屈折
	屈折
On 在膜厚, 屈折率 n, 吸収係数 k 的變化層上打上 Check 記號。	屈折
沒有 Check 記號的層即使在ΔT, Δn, Δk 輸入數值, 膜厚,	
率 n, 吸収係数 k 也不會改變。	
ΔT 設定膜厚的變化量	
Unit 設定膜厚變化量的單位	
單位可以從光學膜厚・物理膜厚・相對値(%)・標準偏差(σ)中邊	擇
△n 設定屈折率 n 的變化量	
Unit)設定屈折率 n 變化量的單位	
單位可以從絶對値・相對値(%)・標準偏差(σ)中選擇	
△k 設定吸收係数 k 的變化量	
Unit 設定吸收係数 k 變化量的單位	
單位可以從絶對値・相對値(%)・標準偏差(σ)中選擇	

曲線圖視窗的設定項目

圖表種類	:選	業光譜曲線圖或入射角・色計算曲線圖
plot 種類	:選	睪反射率・透射率・吸收率・光密度・相移・群延遲・偏振光
變化的種類	:選	睪膜厚・折射率・吸收係數等欲變化的項目。
分割數	:	指定 Mismatch 的分割数。 例如、 在變化量±10%指定分割数為 5 時,會輸出-10%,-8%,-6%,-4%,-2%,0%,

+2%, +4%, +6%, +8%, +10%的計算值。

在變化量±10%指定分割数為1時·會輸出-10%,0%,+10%的計算值。 每層變化量為不同時 第1層的變化量±10%、第2層的變化量±20%、分割数為1時、
會輸出(第1層-10%、第2層-20%)、(第1層0%、第2層0%)、(第1層+10%、
第2層+20%)的計算值。

解析 :審訊次數: Monte Carlo simulation 的試行次數設定。 按「執行」鍵·Monte Carlo simulation 便會開始·結果顯示於圖表中。 按「清晰」鍵·則會消去 simulation 結果。

> 在ΔT, Δn, Δk 的單位選擇標準偏差(σ)時,使用正規(Gauss)分布使值不一致。 選擇σ以外時,使用一樣分布使值不一致。

在變化量欄會表示各層的膜厚(Thickness),屈折率(n),吸収係数(k)的個別的變化量。

要更改Y軸範圍或系列色,請在圖上連按滑鼠左鍵兩下(或按右鍵一下),選擇曲線圖格示設定 (Chart format)來更改。

要更改 X 軸(光譜範圍),請在主視窗的光譜計算範圍變更。

● Stack 製造誤差

顯示 Stack 視窗時·將計算 Stack 製造誤差。 關閉 Stack 視窗時·將計算單側(主視窗的) 的製造誤差。

● 解析結果的數值表示

在曲線圖上點擊右鍵或是選擇工具列的[heref 其他],再從跳出的 MENU 中選擇[¹/₂表示數值 data]就會表示出曲線圖 data 的數值。另外,選擇[¹/₂]表示與各計算的膜厚、n、k 的設計值 誤差量]就會表示出由每個 Trial 各層的膜厚、n、k 的設計值來的誤差量數值。

	🚺 製造誤差							- 1	o x	<
G	┣ 複製(<u>C</u>)	눱 Copy Min.Ma	.Avg.							
Γ	波長(nm)	Trial19	т	rial20	Trial的最大	Trial的最小	Trial的平均	Trial的穆	』準 偏差	r.
	380	2.886082893	2.92	6969140	3.03/722332	2.271109000	2.029970223	0.230	5101333	/
Γ	381	2.735478725	2.77	3178325	2.904564279	2.116629031	2.490284445	0.248	3888012	
Γ	382	2.590470651	2.62	5163966	2.757037559	1.997284324	2.356146190	0.239	9456710	
Γ	383	2.450974737	2.48	2835468	2.615051067	1.883018301	2.227454802	0.230	0125907	
Γ	384	2.316900622	2.34	6095898	2.478507511	1.773710140	2.104096563	0.220	0910309	
Γ	385	2.188152115	2.21	4842602	2.347304235	1.669236005	1.985953307	0.21	1823877	
	386	2.064627775	2.08	8967796	2.221333800	1.569469563	1.872903000	0.202	2879813	
Γ	387	1.946221477	1.96	8359142	2.100484544	1.474282472	1.764820301	0.194	4090576	
Γ	388	1.832822958	1.85	2900307	1.984641125	1.383544845	1.661577097	0.185	5467881	
	389	1.724318347	1.74	2471492	1.873685039	1.297125698	1.563043021	0.177	7022713	
	390	1.620590667	1.63	6949949	1.767495123	1.212916610	1.469085934	0.168	3765345	
	最大值	2.886082893	2.92	6969140	3.081007345	2.241169688	2.659013965	0.258	404355	
	最小值	0.028642284	0.03	8323016	0.097485654	0.006496775	0.051143499	0.026	652163	
	平均	0.563462283	0.57	4027610	0.722824902	0.455420305	0.580557230	0.072	679469	v

表示曲線圖 data

也表示每個波長的各 Trial 的 最大·最小·平均·標準偏差。

9 製造誤差								-	- 🗆	×
Sheet1(Ra)		Layer 1 (Al2O3)			Layer 2 (ZrO2)			Layer 3 (MgF2)		
	∆Thickness	Δn	Δk	∆Thickness	Δn	Δk	∆Thickness	Δn	Δk	
Sheet1(Ra)	0.000000000	0.000000000	0.00000000	0.00000000	0.000000000	0.00000000	0.00000000	0.00000000	0.0000000	00
+	0.002500000	0.016543418	0.00000000	0.005000000	0.020497548	0.00000000	0.002500000	0.013847868	0.0000000	00
-	-0.002500000	-0.016543418	0.00000000	-0.005000000	-0.020497548	0.00000000	-0.002500000	-0.013847868	0.0000000	00
Trial1	-0.001869928	0.001355049	0.00000000	0.001354563	0.003284426	0.00000000	-0.000044482	-0.007985726	0.0000000	00
Trial2	-0.001458508	-0.004020871	0.00000000	0.000916959	0.014729339	0.00000000	0.001708230	-0.003788070	0.0000000	00
Trial3	0.001117960	0.002051301	0.00000000	0.000133441	0.002372956	0.00000000	-0.001795302	0.010522371	0.0000000	00
Trial4	0.000595085	-0.006929788	0.00000000	0.002929163	-0.003592731	0.00000000	0.001628445	0.001725596	0.0000000	00
Trial5	-0.000251046	-0.009117007	0.00000000	-0.004359560	-0.016192036	0.00000000	0.000880586	0.007612817	0.0000000	00
Trial6	-0.000694404	-0.011587215	0.00000000	-0.003364456	0.008679526	0.00000000	0.001008851	-0.008786444	0.0000000	00
Trial7	-0.001125765	-0.003629218	0.00000000	0.001238651	-0.004903874	0.00000000	0.000898393	0.003857163	0.0000000	00
Trial8	0.001899657	0.000576767	0.00000000	0.002176121	0.010075442	0.00000000	-0.002169313	-0.012310324	0.0000000	00
Trial9	-0.001637546	0.010082445	0.00000000	-0.002833468	0.001230526	0.00000000	0.001071318	0.006163478	0.0000000	00
Trial10	-0.000607693	0.008026142	0.000000000	-0.003906639	0.004228727	0.000000000	0.001914223	0.001274163	0.0000000	00
Trial的最大	0.002178356	0.013611988	0.000000000	0.004265526	0.017197221	0.000000000	0.002302960	0.010522371	0.0000000	00
Trial的最小	-0.002356757	-0.015501124	0.000000000	-0.004709330	-0.019330411	0.000000000	-0.002280861	-0.012310324	0.0000000	00
Trial的平均	-0.000231587	-0.002597486	0.000000000	-0.000714813	0.000039642	0.00000000	0.000422755	-0.000269904	0.0000000	00
Trial的標準偏差	0.001444693	0.009032931	0.000000000	0.002869920	0.010650077	0.000000000	0.001424008	0.006667011	0.0000000	00 ,

由每個 Tria 各層膜厚 · n · k 來的設計值的誤 差量

● 複製到剪貼版

按下工具列的[複製],表示的數值數據全部都會被複製到剪貼版。

按下[Copy Min. Max.Avg.]只會複製光譜·最大·最小·平均的數值數據到剪貼版。

另外,在曲線圖視窗上點擊右鍵或是按下工具列的[臺複製]横向的箭頭,再從跳出的 MENU 中選擇[複製數值數據到剪貼版]或是[只複製最大,最小,平均值的數值數據到剪貼版]也能 執行同樣的操作。

[複製變化量的值到剪貼版]可以把表示在曲線圖視窗的變化量欄位上的數值複製到剪貼版。

● 誤差解析範例

【例1】表示第三層(MgF2)的膜厚(nd/λ=0.25)變化±0.025 時的反射特性 在主視窗製造誤差解析 parameter 欄的[On]列上除了第三層以外其他都不打 Check 符號· 在[ΔT]列輸入 0.025、[單位]列選擇 nd/λ、在曲線圖視窗的更改類型欄只選擇 「Thickness」。

【例 2】表示第三層(MgF2)的膜厚(0.25)變化±2.5%時的反射特性 從例 1 的設定上把[ΔT]變更為 2.5、[單位]變更為%。

● 製造誤差解析的例子

【例1】把全層的膜厚用標準偏差 0.005 o 的正規分布模擬 20 次隨意分布時的反射特性的變異。

在主視窗製造誤差解析 parameter 欄的[On]列全層都打上 Check · 在[σT]列輸入 0.005、在 曲線圖視窗的更改類型欄只選擇「Thickness」。審訊次數設定為 20 並按「執行」鍵。

【例 2】在上面的設定之下模擬 20 次的顏色的偏差。 選擇「顏色計算」、按「執行」鍵。

TFV	- 0 ×	▼製造證券解析 Sheet1		
檔案(E) 編輯(E) 表示(V) Sheet選擇(S) 工具(I) 表示說明(H)		顏色計算	Ra	E用者定義線・ _ 複製(C)・ 123 數值・ 其他・
🔊 2 😫 😡 🛩 3D 🗁 ¹ A 🖿 🕨 🕂 🗛 🗛 🖕 👲		更成類型	10-deg.(CIE1964) D65	- 顏色計算 (380-780nm, 間隔 5nm)
波長 ● nm ● 380 - 780 step 1 nm Detail 通 0 - 60 step 1 deg, Ref= 500 nm 重	/ R,TA單位 > 周 % ・ 設 <	☑ Thickness □ n □ k	圖表 ○ xy 色度圖 ○ a*b* 色度圖 0.7	Sheet1(Ra) Sheet1(Ra)
Sheet1 Sheet2 Sheet3 Sheet4 Sheet5 Sheet6 Sheet7 Sh Center 500 nm, Angle 0 deg deg substrate N-BK7(SCHOTT) deg deg	eet8 Sheet9 Sheet10 Sheet11 Sheet12 Sheet13 Sheet14 Sheet155,*	分區數量 1 分析 第四次數	数值数键	50 50 50 50 50 50 50 50 50 50 50 50 50 5
Thickness n and k profil No. nd/λ nm Material dn dd 1 0.2500 75.56 Al203 0.0000 0. 2 0.5000 121.97 ZrO2 0.0000 0. 2 0.500 121.97 ZrO2 0.0000 0.	e 秋 不均匀 On AT 單位 An 單位 Ak 單位 0.000 0 0.005 σ 1.00 % 1.00 % 0.000 0 0.005 σ 1.00 % 1.00 %	音50人数 20 	L*C*h 0.3 Hunter Lab 0.1 CIE L*u*v 0.0 CIE UCS 0.0 Whiteness Index 0.0	.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 x
Aa As Ap ODa ODa ODp Frs Frp Off Fts Ftp Off	 <	No. Thickness n k □ 1 - Sheet1 1 0.005(σ) 0 0 2 0.005(σ) 0 0 3 0.005(σ) 0 0	X YZ: X Y Z Sheet1(Ra) 0.114522 0.103560 0.084 + 0.098464 0.090139 0.1280 - 0.139700 0.126116 0.0672	xyz CIE L*a*1 x y z L* a* 462.0.3724.0.3367.02090.09355.06706 064.0.3109.02846.0.4044.08142.0.5339 1810.04195.0.3787.0.2018.1.1392.08266
		警告:有效的光譜范圍。[Zrd	D2] 400-800 nm	Cancel

3.6.9 同時顯示反面測的特性

勾選 Plot 種類選擇欄的反面,則會顯示光線由反面側射入時的特性。

反面側特性,可在光譜曲線圖、入射角曲線圖、電場強度曲線圖、色計算中顯示。

※ 由反面側計算,與表面側的光線的光路**同一路徑**,當光線由反面側射入時所做的計算。 由此可見,反面側的入射角與表面側的入色角有所差異(曲折率分散時,由反面射入的入射 角光譜將每回有所異動)。

3.6.10 群延遲

要顯示群延遲和群延遲分散圖表,請點擊主視窗的 GD 工具列。可以顯示光譜圖和入射角圖。

支援的群延遲類型和單位如下所示。

群延遲的單位	
fs, ps	

光譜範圍和入射角範圍可在主視窗的計算範圍設置區域中設定。 群延遲的單位可在主視窗的 [工具] - [選項] - [相位和群延遲] 的「群延遲單位」中設定。

在群延遲的計算中·微分也包含光學常數(n, k 的色散公式)。 未使用誤差較大的數值微分(差分)。 在 Sheet 選擇框中, 可以選擇要顯示主視窗中哪個工作表的圖表。

光譜曲線圖群延遲			- 🗆 🗙
All sheets GD;GDD;TOD	🖂 Rs;R	p	×
Sheet1 Sheet2: [Empty] Sheet3: [Empty]			Sheet1 GD Rs Sheet1 GD Rp
Sheet4: [Empty] 10 450 Sheet5: [Empty]	500 550	0 600 6 波長 (nm)	50 700 750
Sheet7: [Empty] Sheet8: [Empty] Sheet9: [Empty]			Sheet1 GDD Rs Sheet1 GDD Rp
Sheet10: [Empty] Sheet11: [Empty] ¹⁰ 450 Sheet12: [Empty]	500 55	0 600 6 波長 (nm)	50 700 750
Sheet13: [Empty] Sheet14: [Empty] Sheet15: [Empty] Sheet16: [Empty]			Sheet1 TOD Rs Sheet1 TOD Rp
Sheet17: [Empty] Sheet18: [Empty] Sheet19: [Empty]	500 55	0 600 6 波長 (nm)	50 700 750
Sheet20: [Empty] [. [ZrO2] 400-800	nm		,

在 GD 類型選擇框中, 可以選擇 GD 的類型。

在計算類型選擇框中,可以選擇計算類型,如反射、透射、偏振或背面等。

群延遲圖表不會與主視窗底部的計算類 型選擇區域聯動。

請使用圖表視窗上方的計算類型選擇框 進行選擇。

圖表會依 GD 類型分開顯示。可以使用工具列更改排列方式。

TFV 使用手册

3.6.11 基板和薄膜的層壓計算(Stack)

Stack 的計算結果會以光譜曲線圖 · 入射角曲線圖 · 色計算表示。

在入射媒質與出射媒質之間,交互配置「膜」與「基板或是媒質」。 20個 Sheet、複數的構成可以同時以曲線圖、數值表示出來。

【Stack 的設定項目】

項目	内容				
基板和媒質的數量	設定基板和媒質的數量。				
	按下數字旁的小按鍵「膜」與「基板·媒質」會個別增加或減少1; 合計2行。				
	按下數字旁的大按鍵「膜」與「基板·媒質」兩個都會增加或減少 2;合計4行。				
	軟體上基板·媒質合計可以輸入到 5000 為止。				
	在計算速度的關係上雖會依實用的波長範圍 · 但應該可以到數十程 度。				
入射角	設定由入射媒質到最一開始入射到基板表面的光線入射角。				
入射媒質	設定入射媒質。				
	入射介質始終以吸收係數 (k) = 0 進行計算。				
膜(前向)	設定膜。				

TFV 使用手册

膜(反向)	可以選擇表示在主視窗 Sheet 的膜。					
	選擇[None]會變成無膜狀態。					
用	[膜(前向)]為在 Stack 視窗上側是入射媒質、下側是面向基板配置 膜。					
	[膜(反向)] 為在 Stack 視窗下側是入射媒質、上側が是面向基板配 置膜。					
基板	設定基板·媒質。					
^{媬筫} 用滑鼠點擊可以選擇	從媒質到另一個媒質當作為一個 block · 可以表示出每個 block 分 光特性的數值。在曲線圖上無法表示出每個 block 的分光特性 · 只 能表示出全體構成的分光特性。					
基板或媒質。	※關於 block 請參考下一個項目。					
	每個 block 被交互用顏色區分。					
	基板與媒質在光學上沒有差別·為了區分 block 所以區別基板與媒					
	質。					
出射媒質	設定出射媒質。					
Thickness(mm)	基板·媒質的厚度單位設定為 mm。					
	厚度為基板·媒質的内部透過率未滿 100 時的意思。					
	全波長域內部透過率為 100 時,即使改變厚度分光特性也不會變 化。					
	厚度設定為 0 時,內部透過率會以 100 去計算。					
	即使厚度為0時,基板,媒質也不會呈現沒有的狀態。					
Ra, Rs, Rp, Ta, Ts, Tp,	選擇計算種類。					
Aa, As, Ap, ODa, ODs,	Ra: 反射率(平均)、Rs: 反射率(S 偏振光)、Rp: 反射率(P 偏振光)					
ODp, 反面	Ta: 透過率(平均)、Ts: 透過率(S 偏振光)、Tp: 透過率(P 偏振光)					
	Aa: 吸収率(平均)、As: 吸収率(S 偏振光)、Ap: 吸収率(P 偏振光)					
	ODa: 光密度(平均)、ODs: 光密度(S 偏振光)、ODp: 光密度(P 偏 振光)					
	裏面:針對從出射媒質側的入射光來計算分光特性。為了使表面·裏 面任一面的透過率為一樣的值·所以不計算裏面的透過率。					

※ 關於 Stack 各面的膜計算 · 忽視主視窗膜構成的入射角 · 入射媒質 · 基板 · 使用主視窗的入射角 · 入射媒質 · 基板 ·

※ Stack 使用提示

Stack 的計算基於以下原理: 薄膜:相干 (光線發生干涉) 基板 / 媒質:非相干 (光線不干涉,考慮多重反射)

對於像金屬這樣具有強吸收特性的物質,當厚度足夠時將阻擋光線穿透。 這類物質通常不用作 Stack 的入射媒質、中間基板或中間媒質。 請將它們用作薄膜或是最終的射出媒質 (基板)。

對於像彩色玻璃這樣吸收較弱的物質,請將吸收係數 (k) 設定為 0,並設定內部穿透率後使用。

😻 Sta	ck					_		×
編輯(<u>E</u>)	表示()	<u>v</u>)						
1	2	3	4	5	6	7	8	9 < >
	基	板和妙	某質的	數量		7 <		
		入射	角 (de	eg.):		0 ♠		
							Thickr	ness(mm)
	入學	射媒質	1					
	膜	(前向)	Shee	t1				
		基板	N-BK	7(SC	нотт)		1.00
	膜	(反向)	Shee	t 1 (S	heet2))		
		媒質	1					1.00
	膜	(前向)	Shee	t 1 (S	heet3))		
		基板	N-BK	7(SC	нотт)		1.00
	膜	<mark>(</mark> 反向)	Shee	t 1 (S	heet4))		
		媒質	1					1.00
	膜	(前向)	Shee	t1 (S	heet5))		
		基板	N-BK	7(SC	нотт)		1.00
	膜	(反向)	Shee	t1 (S	heet6))		
		媒質	1					1.00
	膜	(前向)	Shee	t1 (S	heet7))		
		基板	N-BK	7(SC	нотт)		1.00
	膜	(反向)	Shee	t1 (S	heet8))		
	出身	射媒質	1					
⊠ Ra □ Aa	□ Rs □ As	i □ R i □ A	p 🗆 p	Tal	Ts	□ Tp □ 反面		

● 有關 block

從媒質到另一個媒質當作為一個 block,可以表示出每個 block 分光特性的數值。

・例1

・例 2

😻 Stack			
編輯(<u>E</u>) 表示(<u>V</u>)			
1 2 3	4 5 6 7	8 9 < >	
基板和媒	【質的數量 3 📢	> >	
入射	角 (deg.): 0 🖉		
		Thickness(mm)	
入射媒質	1		
膜(前向)	Sheet1		
基板	N-BK7(SCHOTT)	1.00	
膜(反向)	Sheet1		沒月 Block
基板		1.00	
膜(前向)	Sheet1		
基板	N-BK7(SCHOTT)	1.00	
膜(反向)	Sheet1		
出射媒質	1		
	•		
⊠Ra □Rs □R □Aa □As □A	p □Ta □Ts □Tp p □反面		

在光譜曲線圖或是入射角曲線圖點擊右鍵,選擇[表示數值數據],就會跳出 Stack 視窗全体 構成的分光特性與每個 block 的分光特性。

😈 Wavelength Data					×			
Ę	_ 複製(<u>C</u>)							
Γ	波長 <mark>(nm)</mark>	Sheet1(Ra)	Stack1(Ra)	Stack1-1(Ra)	Stack1	-2(Ra)		^
	380	2.583477606	9.082413118	4.502322921	5.0332	265045		
	381	2.445031814	8.619593469	4.256861276	4.7701	103090		
	382	2.312149033	8.173186890	4.021928114	4.5168	337313		
	383	2.184718008	7.743132762	3.797316755	4.2733	35502		
	384	2.062622466	7.329331276	3.582806784	4.0394	150912		
	385	1.945741726	6.931645606	3.378165570	3.8150)23484		
	386	1.833951296	6.549904187	3.183149743	3.5998	81051		
	387	1.727123440	6.183903059	2.997506639	3.3938	340527		
	388	1.625127724	5.833408278	2.820975690	3.1967	709066		
	389	1.527831531	5.498158348	2.653289764	3.0082	285201		
	390	1.435100559	5.177866674	2.494176455	2.8283	359943		
	最大值	2.615381789	9.229443306	4.582655862	5.0966	93940		
	最小值	0.043510567	0.326275819	0.155909951	0.0869	55945		
	平均	0.569680009	2.148990397	1.082644504	1.1229	63878		~

Sheet 1	主視窗 Sheet1 的分光特性
Stack 1	Stack 視窗1的全體構成的分光特性
Stack 1-1	Stack 視窗1的 block1 構成的分光特性
Stack 1-2	Stack 視窗1的 block 2 構成的分光特性

- 貼合玻璃等的構成
- ・例1

玻璃與玻璃之間不隔著膜而使其接觸 · 如下所示把膜設為[None](無膜)。

這個例子為 N-BK7(SCHOTT)與 Quartz 之間的膜因為是[None] (無膜),所以兩片玻璃變成 接觸的狀態。

😈 Stack					
編輯(<u>E)</u> 表示(<u>V</u>)					
1 2 3	4 5 6 7	8	9 < >		
基板和媒質的數量 2 4 4 2 4					
入射角 (deg.): 0 🔍					
		Thicknes	s(mm)		
入射媒質	1				
膜(前向)	Sheet1				
基板	N-BK7(SCHOTT)		1.00		
膜(反向)	None				
基板	Quartz		1.00		
膜(反向)	Sheet1				
出射媒質	1				
□					

玻璃與玻璃之間夾著膜和接著劑等,假使膜或接著劑的厚度是厚的,超越可干涉距離時,把 膜和接著劑當成基板,如下所示。

[・]例 2
這個例子為 2 枚 BK7 之間夾著厚度 0.1mm 的 PMMA。

😈 Sta	ck						_		×	
編輯(<u>E</u>)	表示()	۵								
1	2	3	4	5	6	7	'	8	9 < >	
	基	板和妙	質的數	彙		3 <	<>	>		
		入射	角 (de	g.):		0⇔				
							Т	hicknes	ss(mm)	
	入見	討媒質	1							
	膜((前向)	Sheet1							
		基板	N-BK7(SCHOTT)					1.00		
	膜((反向)	None							
		PMMA					0.10			
	膜(None								
		基板	N-BK7(SCHOTT)						1.00	
	膜((反向)	Sheet1							
	出身	射媒質	1							
⊠ Ra □ Aa	□ Rs □ As	□ R □ A	p □1 p	īa 🗆] Ts	□ Tp □ 反i	面			

・例3

玻璃與玻璃之間夾著膜或接著劑等,假使膜或接著劑的厚度是薄的、為干涉領域時,把膜或 接著劑當成膜,如下所示。

在主視窗的 Sheet2 設定膜或接著劑的單層膜。

😻 Stack	-	- D X
編輯(<u>E)</u> 表示(<u>V</u>)		
1 2 3	4 5 6 7	89 <>
基板和妙	質的數量 2 📢	< > >
入射	角 (deg.): 0 🖗	
		Thickness(mm)
入射媒質	1	
膜(前向)	Sheet1	
基板	N-BK7(SCHOTT)	1.00
膜(前向)	Sheet2	
基板	N-BK7(SCHOTT)	1.00
膜(反向)	Sheet1	
出射媒質	1	
☐ Ra ☐ Rs ☐ R ☐ Aa ☐ As ☐ A	p □Ta □Ts □Tp p □ □反面	i

3.6.11.1 Stack 構成的複製・貼付・反轉

從 Stack 視窗的 Menu 選擇[編輯]或是點擊右鍵列表在跳出的 Menu · 可以選擇 Stack 構成 的複製和貼付等。

將此 Stack 複製到另一個工作表	把表示的 Stack 構成複製到其他的 sheet。
清除 Stack	清空表示的 Stack 構成。
將 Stack 複製到剪貼板	把表示的 Stack 構成複製到剪貼板。
(表計算 soft 貼付用)	可以貼到表計算 soft 等。
翻轉 Stack	讓表示的 Stack 上下反轉。

3.6.11.2 Stack 視窗 Sheet 的選擇

要選擇隱藏起來的 Sheet · 點擊[卷軸扭] · 出現 Sheet 的列表後點擊列表或是從 Menu 點擊 [表示]-[選擇 Stack]再選擇想要表示出來的 Sheet(Stack)。

3.6.12 基板·媒質的內部透射率

在分散數據編集画面上屈折率(n)、吸収係数(k)的其他登錄內部透射率。

内部透過率會依每個波長(nm)·厚さ(mm)來證錄。

可以登錄複數的厚度。

計算時在 Stack 視窗以最接近指定的基板·媒質的厚度登錄數據來執行直線補間算出內部透 射率。登錄的數據剛好在中間的厚度時,使用薄的那方的厚度數據。

計算在境界面的反射 · 透過時使用 k · 計算基板和媒質内的衰減則使用內部透射率。 必要的話請各別登錄 k 與內部透射率。

😻 色散資料編輯					– 🗆 X
🗋 新增 😘 變更檔:	名 脑 複製 🗙 刪除				
MP-LAF81(Hi ^	色散資料的檔名: N-BK7(SCHC)TT)	預覽		
MP-NBF1(HC	備註		1.56		
MP-NBFD10-	標題: N-BK7		1.55+		
··· MP-NBFD130	註解: SCHOTT Optical G	ass Catalog November 2014	1.54		
MP-PCD4-40			1.50		
··· MP-PCD51-7	有效範圍 (nm):	312.5663 to 232	1.51		
MP-TAC60-9	→ 共力 145 米百かつ 282 192		1.5		
MP-TAC80-6	○ 古組垢値(Table) ● 免勤ざ	n: Collmaiar	1.49		
MP-TAF101-		II. Seiiffelei	1.48		
MP-TAF105(k: Zero	~ 500	1,000 1,500 波長(nm)	2,000
MP-TAF31-1			li li		
MP-TAFD205	1 02061212		內部透射率(Ti)	Linear(Table) 🗸 🗸
MP-TAFD302	A0 1.03901212				· ·
MP-TAFD51-	A1 0.231/92344	k = 0	波長(nm)	Ti(%) T	hickness(mm) ^
-N-BAF10(SCI	A2 1.01046945		290	6.3	10
-N-BAF3(SCH	A3 0.00600069867		300	29.2	10
-N-BAF4(SCH	A4 0.0200179144		310	57.4	10
-N-BAF51(SCI	A5 103 560653		220	57.1	10
- N-BAF52(SCI	103.300033		320	//	10
- N-BAK1(SCH			334	90.5	10 ~
- N-BAK2(SCH	📄 清晰 嗿 複製 浳 粘貼		📄 清晰 💼 複製	📔 粘貼 📴 插入	、 🗈 刪除 🛛 丿
N-BAK4(SCH		4 22			
N-BAK4HT(S	$n(\lambda) = 1 + \frac{A_0 \lambda^2}{2} + \frac{A_1 \lambda^2}{2} + \frac{A_1 \lambda^2}{2}$	<u>A2A</u>			
N-BALF4(SC)	$\bigvee \lambda^* - A_3 \lambda^2 - A_4$	$\lambda^* - A_5$			
N-BALF5(SCF					
IN-BASE2(SCI ♥	✓ 適用	世 聖設 公式的λ單位是 立	微米。		關閉

內部透射率登録的種類

種類	内容
Lossless (Ti=100%)	在 輸 入 内 部 透 射 率 (Ti) 欄 右 上 方 的 編 輯 欄 選 擇「 Lossless (Ti=100%)」·使變成無内部損失 (Lossless)。
Linear(Table)	在輸入內部透射率(Ti)欄右上方的編輯欄選擇「Linear(Table)」 時,可以在每個波長登錄內部透射率(Ti)、厚度。
	波長與波長之間用直線補間算出内部透過率。
Calc. Ti from k	在輸入內部透射率(Ti)欄右上方的編輯欄選擇「Calc. Ti from k」時,從吸收係数(k)開始使用Lambert-Beer法則計算內部透射率。

※ 在 Stack 視窗厚度設定為 0mm 時,內部透射率會以 100 計算。

3.6.13 用數值表示計算結果

所有的計算結果不只能用曲線圖表示也可以用數值表示。

用數值表示結果時·點擊曲線圖右鍵從跳出的 Menu 中選擇【¹23數值表示計算結果】。

使用者線和分光光度計線也會以數值顯示,但這些數值是根據主視窗的計算範圍和計算間隔 進行線性插值的結果。

3.7 最適化機能(1) 標準 MODE

欲啟動最適化機能、請點選工具欄中的設計最適化⁰₧。 TFV 的最適化、有標準 MODE 與手動 MODE 兩種模式。 本章節對標準 MODE 進行說明。次一個章節對手動 MODE 做說明。

標準 MODE、實行一般最適化。

由 Local search、Global search、Needle search 三種最適化手法中選取實行最適化。

◎ 設計最適化		— 🗆	\times
標準模式 手動模式			
	4. 最適化 [F4]	5. 結果	
	Local Search		
2. 目標	●開始 [E5] 繼續 [E6]	No. Merit 層數 總厚度 (nm) 最小厚度 (nm) 最大厚度 (nm)	
○從系列中選擇 Ο 目標值輸入			
光譜曲線圖 🔻 設定 [F2]	◎停止 [F8]		
~			
種類			
瞄準 目標值 🔹		A	
3. 顯示結果的sheet [F3]			
•		👽 🕑 以前的結果 🕥 下一個結果 📄 複製(C)	
●設定 [F12]		關	閉

● 項目的說明

1. 初期設計	選擇最想實行最適化的設計。				
	可從 Sheet 顯示的設計中選取。				
2. 目標					
從系列中選擇	可選擇光譜圖表、入射角圖表中顯示的 user line、分光光度計				
	line、其他的 sheet 的計算值作為目標。				
	種類: Ra, Rs, Rp, Ta之中選擇目標種類。				
	瞄準:從 「目標值」、「目標值以上」、「目標值以下」中做選擇。				
目標值輸入	按下設定按鈕後,將顯示輸入目標的畫面。				
	您可以設置複雜的目標,例如波長與入射角的複合目標、包含多				
	種偏振的目標、加權目標等。				
3. 顯示結果的 sheet	選擇顯示最適化結果的 sheet。				
4. 最適化	Local search、globe search、needle search 中選擇欲使用的最				
	適化手法。				
	Local search: 在層數固定之下,只最適化膜層。				
	globe search:在層數固定之下,只最適化膜層。隨著膜厚的大				
	改變重覆執行最適化·計算出複數的解。				
	needle search: 隨著層數增加執行最適化。				
開始鍵	按開始鍵·開始最適化。				
停止鍵	按停止鍵·可強制最適化解析。				
繼續鍵	欲繼續 Needle search 時使用。				
	可單於 Needle search 時使用。				
設定鍵	執行最適化 parameter 的設定。				
	請參照「3.13.1 操作設定」。				

5. 結果	顯示有關所獲得溶液的評估函數值、層數和膜厚度的資訊。 Merit 越小,解決方案越接近目標。 如果獲得多個解,將顯示多行。當您選擇一行時,其膜配置將顯 示在主視窗的工作表上。
	編號:所得的溶液的編號。 解依照評價函數值遞減的順序排序 (更接近目標)。 Merit:評價函數值。Merit = $\sqrt{\frac{1}{N}\sum_{i=1}^{N}(T_i - T'_i)^2}$ N:目標數量 Tj:計算值 Tj':目標價值 總厚度:所有層的總物理膜厚 最小厚度:最薄層的物理厚度 最大厚度:最厚層的物理厚度

● 目標值輸入說明

按「目標值輸入」 鍵,即會顯示目標設定畫面。

目標值輸入·光譜、入射角可任意設定、也可對各資料的設定重要度。又·可使用於 Ra, Rs, Rp, Ta...等種類或預定目標進行複數組合搭配。

🔰 目標值輸入		0	
🦻 開啟目標 🔛 保存目標	🦕 使用者定義線 🤔 分光光度計 🎹 圖表系列		
目標資料檔案: (無題)			
目標群體	目標數據		
■Data1	輸入類型 離散值 · 值類型 Ra: 反射率 [平均偏振光] · 瞄準 目標值		
	離散值目標		
	頻譜類型和單位值的單位		
	波長 nm - % -		
	目標		
	使用 波長 (nm) 入射角 (deg) 值 (%) 重量		
	1		
	1		9
			_
⊌追加 ⊌刪除	□ 清晰 -] 複製(C) - 胎上(V) - 插入(I) → 删除(D)		
這個目標的註釋	這個數據的註釋		
以勾選的項目作為目標	使用 <u>QK</u>	Can	icel
-			

目標群組	種類或預定目標等每個分別設定為 Data1 · Data2形式。 就算類別或目標相同 · 入射角不同 · 群組內的 Date 的分類方法皆自 由。 格子中勾選的項目作為目標使用。根據勾選 on, off 可以輕易改變目標 知会。
	「此目標的 memo」欄中可記入目標 memo。
🔒 追加	目標群組欄類追加 Data
⊌削除	刪除由目標群組欄中選取的 Data。
目標 Data	選取的 Data 值顯示在目標群組欄中。
	值,可直接輸入或由 user line 資料夾、分光光度計資料夾中讀取、由圖
	表系列中複製。又或可由 Excel 等複製貼上。。
	「此 data 的 memo」欄中可輸入 Data 每次的 memo。
開啟目標	開啟保存的目標資料夾。
保存目標	保存做成的目標資料及。
使用者定義線	由使用者定義線資料夾中讀取資料於表中。
分光光度計	由分光光度計資料夾中讀取資料於表中。
圖表系列	由圖表中顯示的系列中讀取資料於表中。

● 目標類型

[離散值]

為每條線輸入一個點作為目標。

下圖是一個示例·其目標是在 500 nm 波長下垂直入射的反射率為 0%·在 600 nm 波長下垂 直入射的反射率為 0%。

🔰 目標值輸入				×
ゔ 開啟目標 🔛 保存目標.	🦣 使用者定義線 🤔 分光光度計 🎫 圖表系列			
目標資料檔案: (無題)				
目標群體	目標數據			
Data1	輸入類型 離散值 · 值類型 Ra: 反射率 [平均偏振光	」 瞄準 目標值		-
	離散值目標			
	頻譜類型和單位值的單位			
	波長 <mark>v</mark> nm v % ·			
	目標			
	使用 波長 (nm) 入射角 (deg) 值 (%) 重量			- 1
	· 🖸 500 0 0 1			- 1
	600 0 0 1			
	1			
	1			
🔒 追加 📑 刪除	□ 清晰 □ 複製(C) □ 貼上(V) ∃⊂ 插入(I) ⇒ 刪除(D)			
這個目標的註釋	這個數據的註釋			
以勾選的項目作為目標	使用	QK	Car	ncel

[連續值(光譜)]、[連續值(入射角)]

輸入目標連續值 · 例如從 XX nm 到 XX nm 的光譜的反射率為 XX% · 從 XX 度到 XX 度的入射 角的反射率為 XX%等。

下圖是一個示例,該示例針對 400 nm 至 700 nm 的波長的垂直入射將 50%的反射率作為目標。 在波長欄位字段中輸入 5nm。 要設定的實際目標是對 400、405、410、…,700 nm 的 61 個波長的總反射率為 50%。

如果要瞄準對角線·例如·在下圖中·如果輸入數值 50(開始)和 0(結束)·對角直線上的一點在 400 nm·50%到 700 nm·0%為目標。

如果勾選[平均]字段,則平均值將作為目標。在以下示例中勾選[平均],將執行優化,以使 400、405、410,…,700 nm總共 61 個波長的反射率的平均值為 50%。

」用取目標 保仔目標	Ser DE/H-BAE	品稿 🔛 江龙光度計	1111 (HE (SC 376 27).							
目標資料檔案: (無題)										
目標群體	目標	數據								
Data1	輸入對	類型 連續值 (光調	普)	值類型 Ra	a: 反射率 [平	均偏振	[光] 🔽 瞄準	目標值	*	
	連續	值 (光譜) 目標								
	頻譜	類型和單位		值的單位						
	波長		nm	%						
					目標					
	使用	波長 (nm) 開始	值 (%) 開始	波長 (nm) 終了	值 (%) 終了	平均;	波長 (nm) 間隔	入射角 (deg)	重量	
	• 🖂	400	50	700	50		5	0	1	
		-					5	0	1	
		-					5	0	1	
							5	0	1	
							5	0	1	
🕽 追加 🔒 刪除	清清	断 🗋 複製(C) 🕌 貼.	上(V) 🚰 插入((➡ 刪除(D)						
這個目標的註釋	這個	數據的註釋								

[顏色]

選擇視野、光源和顏色系統,然後為每個顏色座標設定目標。 如果要設定多個目標,請追加一個目標組。

	U and activity of the second	ere est. freed a	an she wat was				~	
)用取目標 同保存目標. 日標 答 彩 檔案·(毎 51)	· Ser 使用看足套線 💕 分充元	度計Ш目						
日標群體	日標數據							
² Data1	輸入類型 顏色			→ 值類型 Ra:	反射率 [平均偏振光]			
	顏色目標	顏色目標						
	10-deg.(CIE1964)	- De	55 💽 xyz	• 入射角 (deg)	0		
	顏色坐標 使用	值	目標 重量 1	瞄準 目標值				
	y 🗹		1	目標值				
	z		1	目標值				
😼 追加 🔒 刪除		□ 貼上(V))⊒€插入	(),➡删除(⊇)				
這個目標的註釋	這個數據的註釋							

設定的目標顯示在光譜圖·入射角圖和光譜/入射角複合圖·群延遲圖中。 但是·如果為目標類型指定顏色(顏色目標)·則目標將不會顯示在圖形上。

3.7.1 Local search

使用 Levenberg-Marquardt 法·藉著邊變更膜厚邊找尋最適當解析。 按開始鍵即會開起 local search·結束結果會顯示於 sheet。

3.7.2 Global search

Simulated Annealing Method 法與 Levenberg-Marquardt 法組合的手法,在 local search 的途中,將膜厚隨意變更、避免陷入非本來解的局部解結果。

按開始鍵 Global search 將會啟動·結束後會顯示結果如下途中數種類的解。目標由最近的 解開始做順序排列。選擇行時,其解的膜構成會顯示於 sheet。請選擇最適當的解。

在設定探索的次數等上,按「設定」鍵。關於設定內容,請參照「3.13.1操作設定」。

♥ 設計玻璃10								
標準模式 手動模式								
1. 初期設計	4 最適化	5.	結	果				
Sheet1: 8LTest	Global Search							
2. 目標	◎開始 総結	N	lo.	Merit	層數	總厚度 (nm)	最小厚度 (nm)	最大厚度 (nm)
• 簡單目標 ○ 高度目標		÷.	7	0.010042	8	429.39	8.49	155.03
光譜曲線圖 設定	◎停止		6	0.021256	8	417.89	11.10	108.67
Spectrometer: 8LTest			5	0.029207	8	394.13	0.00	139.85
種類 Ra			4	0.029739	8	391.18	0.00	129.38
瞄準 目標值	探索時間: 0:00:04.104	L.	3	0.030439	8	393.69	0.00	136.84
3. 顯示結果的sheet		L	2	0.031967	8	389.95	0.56	121.07
Sheet2		L	1	0.126393	8	543.66	2.17	263.01
Sheetz		L.	0	初期設計	8	416.09	9.22	117.04
		0)以	前的結果 🔇) 下-	個結果 🕒 複製	빈(C)	
●設定								關閉

3.7.3 Needle search

插入針狀的薄層,讓多層膜成長,藉此搜尋解。 Needle 層的插入→local search→needle 層的插入→local search 的反覆循環。 按開始鍵,即會顯示如下之畫面。

🦉 Needle Search 參數									
最大層數 6	1								
同時插入needle層的數	3 🕀								
合成次數 1	0								
如果可能的話,排除 10 🤅	。 nm以T	▽的層。							
□ Needle層插入前先local search									
Needle層物質									
	使用		Material]					
		AI2O3							
追加 🕘		ZrO2							
		MgF2							
	L	(
2 重設			OK Cance	el					

● 項目說明

最大層數	設定能成長的最大層數。
同時插入 needle 層的數	嚐試設定 Needle 層最大可以挿入幾層。
	若無效時,在此插入較原設定數少的層數。
合成次數	插入 Needle 層→local search 反覆次數設定。
	若在中途無效時,不管是否達到次數,可停止探索。
如果可能的話·排除~nm 以	不要製作物理薄膜厚度小於~nm 的層。 然而,還顯示包
下的層。	括~nm 或更小的層的結果。
Needle 層插入前先 local	最初的 Needle 層在插入前設定是否可以 local search。
search	
Needle 層物質	以 Needle 層設定為插入的物質。List 上的某種物質優先插
	入。不使用格子中沒有勾選的物質。測試時邊改變物質組合
	較為便利。

● 按下 OK 開始最適化。

🧿 Needle Search 參數				×				
最大層數 6	1🕀							
同時插入needle層的數	3≑							
合成次數 10 条								
如果可能的話,排除 10	nm以T	下的層。						
	iicii							
Needle層物質								
	使用		Material					
		AI2O3						
追加 🕥		ZrO2						
		MgF2						
◎重設			ОК	Cancel				

如下所示·在結果欄會表示出複數的結果。乖離度從小到大排序(接近目標的順序)。 選擇行的話膜構成會表示在主視窗的 Sheet。

示于厌死 于勤快式				_	_					
1. 初期設計	4. 最適化			5. 結	果					
Sheet1	Needle Sear	Needle Search								
2. 目標	◎開始	繼續		No.	Merit	層數	總厚度 (nm)	最小厚度 (nm)	最大厚度 (nm	
○ 簡單目標 ○ 高度目標			_	• 31	0.067232	36	1679.86	0.29	246.93	
光譜曲線章 設定	01		_	30	0.073687	34	1661.67	10.00	253.1	
				29	0.079119	24	1459.54	11.01	229.8	
種類 Ra 、		探索時間: 0:00:05.431	探索時間: 0:00:05.431		28	0.079473	34	1484.64	10.00	176.00
瞄准 白垣 估 🔍	探索時間: 0:00				27	0.080720	34	1494.65	10.00	186.6
2. 照一结用的shaat				26	0.082178	22	1530.41	10.00	244.2	
S. MRJUND TRUJSTICCU				25	0.084096	24	1653.09	2.31	401.29	
Sneetz				24	0.085123	28	1257.84	10.00	188.5	
				一以	前的結果 🕥)下-	個結果」複製	έ(C)		

needle search 繼續
 執行 needle search,將可按壓「繼續」鍵。
 持續按繼續鍵,繼續收探索。
 透過增加針搜尋參數畫面上的"合成次數",可以減少按繼續按鈕的次數。

參考文獻: Sh. A. Furman and A.V.Tikhonravov, "Basics of optics of multilayer systems", Editions Frontiers, 1992

3.7.4 最適化使用於各層設定

開啟最適化機能,主視窗橫向擴張,顯示於各層的最適化用設定欄。

😈 TFV											
檔案(E)	編輯(E) 表;	示(V) She	et選擇(<u>S</u>) 工具	(I) 表示說明(b	H)						
波長		 nm 	-		V F	R,T,A單位	>				
3	80 - 78	30 step	1nm	Detail	適用	% 🔽					
0 -	60 step	1 d	eg, Ref=	500 nm	重設		<				
Sheet1	Sheet2 Sh	eet3 She	et4 Sheet5 S	heet6 Sheet	7 Sheet8	Sheet9 S	heet10	Sheet11	Sheet12	Sheet1	3 She
Center	500	0 <mark></mark> nm, /	Angle	0 deg							
Substrate N-BK7(SCHOTT)											
	Thickn	ess		n and k p	rofile		1		最適化		
No.	nd/λ	nm	Material	dn	dk	不均匀	On	Min	Max	單位	Needle
1	0.2500	75.56	AI2O3	0.0000	0.0000			0.0000	0.0000	nd/λ	
2	0.5000	121.97	ZrO2	0.0000	0.0000			0.0000	0.0000	nd/λ	
3	0.2500	90.27	MgF2	0.0000	0.0000			0.0000	0.0000	nd/λ	
Mediur	n 1				×						
🗹 Ra	Rs I	Rp 🗆 Ta	a 🗆 Ts 🗌	Тр 🗌	反面						
Aa	As .	Ap 🗆 O	Da 🗌 ODs 🗌	ODp							
Frs		dFr 🗆 Ft	ts 🗆 Ftp 🗌	dFt 取	消選取						
	. –										

Opt	設定此層是否為最適化對象。
Min	設定最適化時所能容許的最小膜厚。
Max	設定最適化時所能容許的最大膜厚。
	若設定 0 時,使用「3.13.1 操作設定」的「最適化設定」 膜厚最大值。
Needle	設定 Needle 層是否為插入的對象。

3.7.5 Stack 最適化

表示 Stack 視窗的話,在初期設計可以選擇 Stack。 於 Stack 被使用的膜構成全部同時最適化,可以接近以 Stack 的分光特性為目標。

🝑 設計最適化		— D X
標準模式 手動模式		
1. 初期設計	4. 最適化	5. 結果
Stack1 🔹	Local Search	
2. 目標	◎開始 繼續	No. Merit 層數 總厚度 (nm) 最小厚度 (nm) 最大厚度 (nm)
○ 簡單目標 ○ 高度目標		
光譜曲線圖 設定	◎停止	
~		
種類		
瞄準 目標值	A	
3. 顯示結果的sheet		
Stack1 ·	v	🕑 以前的結果 🕥 下一個結果 🌓 複製(C)
●設定		關閉

3.8 最適化機能(2) 手動 mode

手動mode · 用滑鼠將圖表上的特性拖曳變更形狀 · 使用那個能使之變形的local search進行 最優化的新類型最優化方法 ·

3.8.2 表示複數系列時的動作

針對執行最適化的設計於複数種別系列表示在曲線圖上時·於「固定表示其他系列」打上 Check 符號·表示出的全部的系列都會被當做目標執行最適化。

例如:關於 Sheet1 的 Ra 執行 free 手動 mode 的最適化時,在曲線圖上會表示 Sheet1 的 Ra 裡面與 Ta,於「固定被表示的其他系列」打上 Check 符號時,用滑鼠把変形 Ra · Ra 裏面 · Ta 的三種系列當作目標執行最適化。沒有打上 Check 符號時,用滑鼠只有変形的 Ra 當作目標被執行最適化。

3.8.3 以滑鼠來加重

使滑鼠來回,依來回次數來加重。

一邊按下滑鼠左鍵使曲線圖系列變形時·每當滑鼠通過數據點(X座標)·其數據點的最適化 重量會增加1。

例如:使光譜曲線圖的 Ra 變形到 500nm~550nm 的範圍形状時·在 500nm~550nm 範 圍用滑鼠來回兩次使其變形·此時 500nm~550nm 範圍的數據點重量會變成 4。其他範圍以 及其他系列的數據點重量為 1。

3.9 膜資料的新檔作成、讀取、儲存

3.9.1 膜資料的新檔作成

先選擇要成作膜資料的工作表。

從功能表中選擇[檔案]-[]開新檔案...]。

出現膜資料新規作成的對話視窗,輸入膜名和層數後按「OK」鍵。

TEV										
檔案(E)	編輯(<u>E</u>) 表	示(<u>V</u>) Shee	et選擇(<u>S</u>) 工具	(I) 表示說明(b	1)		開	新福案		- ×
221	🗄 😡 🛂 3C	$M^{\sqrt{2}} \simeq C$. ⊳ ես 🕂 Օր	nk 💩						
波長		🕑 nm			🗸 R,	T,A單位		腊夕		
3	80 - 7	780 step	1nm	Detail	適用 9	6		脵-白		
0 -	60 step	b 1de	eg, Ref=	500 nm	重設			Charatt		
Sheet1	Sheet2 Sh	neet3 Shee	et4 Sheet5 S	heet6 Sheet	7 Sheet8	Sheet9 She *		Sneet1		
Center	50)0 <mark>:::</mark> nm, A	Angle	0 🗧 deg						
Substr	ate N-BK7(SCHOTT)			~					
	Thick	ness		n and k p	rofile			_ 届動		
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均匀		/B S/		
1	0.2500	75.56	AI2O3	0.0000	0.0000					
2	0.5000	121.97	ZrO2	0.0000	0.0000				ς Δ	
3	0.2500	90.27	MgF2	0.0000	0.0000				J -	
Mediu	m 1				v		L.			
🗹 Ra	Rs 🛛	Rp 🗌 Та	n 🗆 Ts 🗌	Тр 🗌	反面					
🗆 Aa	As 🗆	Ap 🗌 O	Da 🗌 ODs 🗌	ODp				OK	Cancel	
🗆 Frs	□ Frp □	dFr 🗆 Ft	s 🗆 Ftp 🗌	dFt 取	消選取					

若在空白工作表上開啟新檔·空白工作表會出現選擇開啟的膜資料內容;若所選擇的工作 表上·已有膜資料的話·工作表會出現選擇開啟的膜資料內容·而既有膜資料則會流失。

3.9.2 從既存舊檔讀取膜資料

先選擇要讀取檔案的工作表。

再按下工具列上的[2]開啟舊檔],或是從功能表中選擇[檔案]-[2]開啓舊檔...]。

選擇想讀取的檔案後,按「開啟」。

😈 TFV						
tin str	編輯(E) 表	示(V) She	et選擇(<u>S</u>) 工具	L(I) 表示說明(L	H)	
2	🗄 🖊 🔀 31	<u>™∧′ ≕ c</u>	ւ ዾ 🖵 🕂 Գ	י ^ה א 🖗		
波長		 nm 	~		🗸 R	,T,A單位 >
3	80 - 7	780 step	1 _{nm}	Detail	適用 9	%
0 -	60 step	b 1di	eg, Ref=	500 nm	重設	
Sheet1	Sheet2 Sh	neet3 She	et4 Sheet5 S	Sheet6 Sheet	7 Sheet8	Sheet9 She
Center	50	00 🗄 nm, /	Angle	0 deg		
Substra	ate N-BK7(SCHOTT)			~	
	Thick	ness		n and k p	rofile	
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均匀
1	0.2500	75.56	AI2O3	0.0000	0.0000	
2	0.5000	121.97	ZrO2	0.0000	0.0000	
3	0.2500	90.27	MgF2	0.0000	0.0000	
Mediu	m 1				~	
🔽 Ra	Rs 🗆	Rp 🗆 Ta	a 🗆 Ts 🗆	Tp	反面	
Aa	As		Da 🗌 ODs 🗌	ODp		
- Frs		dFr Ff	ts Ftp	dFt 取	消選取	
	p _					

3.9.3 膜資料儲存

選擇想儲存膜資料的工作表。

再按下工具列上的另存新檔: , 或是從功能表中選擇[檔案]-[] 另存新檔...]。

輸入喜歡的檔名,按「儲存」·

※由 MENU 中,選擇[檔案]-[||儲存檔案]可複存。

3.9.4 膜資料復原

改變膜厚、膜物質等許多設定後,若想回復到原來的膜資料(檔案儲存的狀態)時,按下工具列 上的重新整理
 ▶.或是從功能表中選擇[檔案]-[
 ■重新整理], 膜資料會復原到檔案儲存的樣
 子。

※但所有的變更將會流失,請注意!

3.9.5 與舊版本膜數據檔案的互換性

將新版本保存的膜數據檔案以舊版本讀取後再保存時,請注意會把不存在於舊版本上的機能 項目刪除掉。

在每個版本的膜數據檔案(附檔名 flm)下保存的項目如下。

		TFV3.0 或更高版本	TFV2.2
			將 TFV3.0 的檔案以
	光學膜厚度	0	TFV2.2 讀取時,會讀取在
Thickness			TFV3.0 下優先被設定側
	物理檤厚度	\bigcirc	(標題有下底線表示之側)
	防空脉序及	Ŭ	的膜厚。
	Material	0	0
n and k profile	dn	0	0
in und k prome	dk	0	0
	不均匀	0	0
	Tooling	0	0
	dn	0	0
	dk	0	0
一方に見ていた。	Filter(nm)	0	0
	Start	0	0
	MG	0	0
	On	0	0
	Min	0	0
最適化	Max	0	0
	單位	0	×單位通常為 nm。
	Needle	0	0
	On	0	×
	ΔT	0	×
	單位	0	×
製造誤差解析	Δn	0	×
	單位	0	×
	Δk	0	×
	單位	0	×
目期時國	周期	0	0
问知族自	倍率	0	0
	中心波長	0	0
	入射角	0	0
甘佃	基板	0	0
	入射媒質	0	0
	Monitor Glass	0	0
	註解	0	0

〇:保存項目、×:非保存項目

3.10 Project 的保存・讀取

在主視窗各 Sheet 上表示的膜數據或視窗的配置、曲線圖的書寫格式和使用者系統等現在的狀況 都會以 Project 保存在檔案裡,讀取保存的 Project 檔案時,這些狀態就會被復原。

😈 TFV									
檔案(E)	編輯(E)	表示(<u>V</u>)	Sheet	:選擇(<u>S</u>)	工具(工) 表示說明()	H)		
Film des	ign			>ພ -	• O _{pt} r	k 🎍			
□ 開新	檔案(N)	Ctrl+	1	~			V F	R,T,A單位	>
👌 開啟	【舊檔(Q)	Ctrl+0	>	1	nm	Detail	適用	%	
 重新 最近 	整理(<u>R</u>)			g, Ref=	ļ	500 _{nm}	重設		
山住力	.时又IT (控宏/S)	Ctrl+		t4 Shee	t5 She	eet6 Sheet	7 Sheet8	Sheet9	he 1
1 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	·····································	curr	٦ ١	ngle		0 deg			
Project	WI IM (LU)						~		
ら 開創	(project					n and k p	rofile		
最近	的project		•	Mater	ial	dn	dk	不均匀	
🖩 proj	<u>e</u> ct另存		,	1203		0.0000	0.0000		
🛚 proj	ect另存為.		2	rO2		0.0000	0.0000		
關閉	project(<u>C</u>)		lgF2		0.0000	0.0000		
導入	L		1				*		
- - - - - - - - - - - - - -	00			🗌 Ts		p 🗌	反面		
Aa	As	Ap			os 🗆 (DDp			
Frs	Frp (dFr	E Fts	E Etr		iFt 取	消選取		

3.10.1 Project 的保存

保存 Project 時,從主視窗的 Menu 選擇[檔案] - [₿ project 另存為...]。

在跳出的對話視窗選擇保存檔案的地方並輸入檔案名保存檔案。

TFV T	estProject.tfvproj]		—		×
檔案(E) 編	編輯(<u>E)</u> 表示(⊻) :	Sheet選擇(<u>S</u>) エ	.具(I) 表示說明(<u>H</u>)		
🔊 🖻 🕌	🖊 🛂 3D 🗁 کړ	. Um 🔈 📣 🕂	o _{pt} n _k 💩			
波長	v n	n 🔽			R,T,A單位	>
380	- 780 ste	p 1 _{nn}	n Detail	適用	%	
0 -	60 step	1 deg, Ref=	500 nm	重設		<
Sheet1 S	heet2 Sheet3	heet4 Sheet5	Sheet6 Sheet	7 Sheet8	Sheet9	She 1

會於標題列中表示出所保存的 Project 檔名

※ 從 Menu 選擇[檔案] - [品project 另存],就可以另存檔案。

● 保存的内容

Project 的保存會保存下記的内容。

項目	保存内容
膜數據	在主視窗各 Sheet 上表示保存的膜數據檔案名。
	※ 有未保存的膜數據時·會跳出催促保存的訊息。
計算設定	開始波長、終了波長、計算波長間隔、開始角度、終了角度、計算角度間隔、 角度特性計算波長。
計算種別的	在主視窗各 Sheet 計算種別(Ra,Rs,Rp,TadFt,裏面)的選択状態。
選擇狀態	
Sheet 數	在主視窗表示的 Sheet 數。
主視窗	主視窗的表示位置·Size。選擇的 Sheet 號碼。
使用者系統	表示的使用者系統的檔案名、線的顏色・類型・線寬。
	※ 使用者系統對象為可能表示的全部的曲線圖。

	※ 沒有保存在檔案裡的使用者系統為對象外。
分光光度計系統	表示在波長曲線圖上的分光光度計系統的檔案名、線的顏色·類型·線寬、絶 対値發生変換時,參考基板名。
曲線圖的寫法	保存各曲線圖的表示/非表示状態、曲線圖的表示位置·Size、表示系列的顏 色·類型·線寬、軸的最大值·最小值·格子寬度的設定状態、範例的表示/ 非表示状態·位置、波長入射角複合曲線圖等的高線設定。 ※可以設定書寫格式的所有曲線圖皆為對象。
電場強度曲線圖	計算種別(平均(s,p), s)的選擇状態。
色計算	視野、光源、色差計算的基準、曲線圖種別、數值數據的選擇状態。
製造誤差解析 曲線圖	曲線圖種別(波長曲線圖·入射角曲線圖·色計算)、計算種別(Ra, Rs)、變化種別(膜厚變化·屈折率變化·吸收係數變化)的選擇状態。
Stack 視窗	表示在 Stack 視窗的 Sheet 數。
	入射角、表面側的膜、基板、媒質、裏面側的膜、出射媒質、厚度、計算種別 的選擇状態。視窗的表示位置。
數值資料視窗	數值資料視窗的顯示狀態。

3.10.2 Project 的讀取

讀取 Project 時,從主視窗的 Menu 選擇[檔案] - [合開啟 project...]。

在跳出的對話視窗選擇檔案讀取。

😻 TFV	TestPro	oject.tfvp	vroj					—			×
檔案(E) 編輯(E) 表示(Y) Sheet選擇(S) 工具(I) 表示說明(出)											
📂 🖻 🖁		Z 3D ≿	= [\] ^ lm)> W -	• O _{pt} I	<mark>الا</mark> 🕹					
波長			nm	~					R,T,A	單位	>
38	30 -	780	step	1	nm	Deta	ail)	適用	%	~	
0 -	60	step	1de	g, Ref=		500 nr	n	重設			<
Sheet1	Sheet	2 Shee	t3 Shee	t4 Shee	et5 Sh	eet6	Sheet7	Sheet	3 She	et9 S	he⁴

於標題列會表示讀取的 Project 檔名

● 復原的内容

Project 的讀取會復原下記的内容。

項目	復原内容
膜數據	在主視窗各 Sheet 上表示讀取的膜數據檔案。
	以讀取的膜數據為基準執行計算表示在曲線圖上。
	※ 因為總括一次保存時,不是保存膜數據而是保存膜數據的檔案名,
	因此使用總括一次保存後要變更膜數據個別保存時,不會讀取總括保存時的
	膜數據而是會讀取個別保存後的膜數據。
	※ 膜數據檔案未存在於總括一次保存的檔案時,該當 Sheet 的膜數據會變成
	沒有的狀態。
計算設定	開始波長、終了波長、計算波長間隔、開始角度、終了角度、計算角度間隔、
	角度特性計算波長設定在主視窗上部的計算設定欄,反映在曲線圖上。

計算種別的選擇	復原主視窗各 Sheet 計算種別(Ra,Rs,Rp,TadFt,裏面) 的選擇状態,反映在
状態	曲線圖上。
Sheet 數	復原表示在主視窗的 Sheet 數。
主視窗	復原主視窗的表示位置·Size·把總括一次保存時選擇的 Sheet 變成選擇狀
	能。
使用者系統	把表示的使用者系統從使用者系統檔案中讀取表示。復原顏色·類型·線寬的
	狀態。
	※因為不是保存使用者系統的數據而是保存檔案名 · 總括保存後變更使用者系
	統檔案的內容時,會表示出變更後的使用者系統。復原在總括保存時的檔案的
))) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
	2014日23.休兴安于四十十次长四十份兴安时,了会伤压达兴休田23.休
	※ 使用有系統檔案本保存在總括保存的檔案時, 个曾復原該當使用有系統。
分尤尤度訂系統	把衣不住波長田線圖的分尤尤度訂系統從檔条中讀取衣不。
	促尿锚杀的原巴· 规型· 减冕的私悲。也曾促尿絕到反射變換的状態。 "你们有些不是你有些不是你的事情不是你有些不是你有些不是你的事情。" "你们有些你们不是你们的事情。" "你们有些你们的事情。" "你们有些你们的事情。" "你们有些你们的事情。" "你们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们
	※囚局个定体仔万兀兀侵司系統的数據则定体仔储条石·總拉体仔佼雯史万兀 光度計系统機定的內容時。金吉子山綫再後的八火火度計系统,復度左續任保
	元度司系統備条的內谷时,曾衣小山愛史俊的万元元度司系統。復原任總指休 左時的禮安的語名
	仔时的储余的旗巴·朔空·縁見私怨。
	把到仅划变换任総估体仔发变更力取数旅储余的内谷时,使用变更後的力取 數據搅安的内容執行為對反射戀悔。
	数據備余时內谷執1〕紀到汉豹愛換。 ※公米来度計系統檔案主保方左痫托保方的檔案時, 天會復原該堂公米来度計
	次力儿儿皮可杀视储采不休仔仁蕊泊休仔的储采时,不首後床改由力儿儿皮可 多纮。
	示剂。
曲線圖的寫法	
	● ・類型・線寬、軸的最大値・最小値・格子寬度的設定状態、凡例的表示/
	非表示状態.位置、波長入射角複合曲線圖等的高線設定。
	※ 設定寫法的對象可能為表示的全部的曲線圖。
電場強度曲線圖	復原計算種別(平均(s,p), s)的選擇状態·反映在曲線圖上。
 色計算	復原視野、光源、色差計算的基準、曲線圖種別、数值數據的選擇状態,反映
	在曲線圖和表上。
製造誤差解析	復原曲線圖種別(波長曲線圖·入射角曲線圖·色計算)、計算種別(Ra, Rs)、
曲線圖	變化種別(膜厚變化·屈折率變化·吸收係数變化)的選擇状態、試行回數。
Stack 視窗	復原表示在 Stack 視窗的 Sheet 數。
	復原入射角、表面側的膜、基板、媒質、裏面側的膜、出射媒質、厚度、計算
	種別的選擇状態、反映在曲線圖上。
	復原視窗的表示位置。
數估容料泪容	數值資料視窗的顯示狀態。

3.10.3 關閉 Project

從主視窗的 Menu 選擇[檔案] - [關閉 project] · 就會關閉現在的 project 內容畫面回到初期 状態。

關閉主視窗以外的視窗時主視窗內的膜數據會全部被清空。

標題列的 Project 檔案名會消失· 膜數據會變成無的狀態。

3.10.4 最近使用過的 Project

從主視窗的 Menu 選擇[檔案] - [最近的 project] · 就會表示出最近使用過的 20 個 project List。

從 List 中選擇 project 檔案名就可以開啟 project。

另外·選擇 List 下部的[清除]就會把最近使用過的 project 歷史紀錄消去·就不會表示在 List 中。

3.11 計算基板及薄膜 nk 的功能

除了常規的單層膜 nk 分析外,現在還可以計算基板和金屬膜的 nk。 從主視窗的選單中,選擇[工具]-[[¶]k基板及單層膜的 nk 分析]

3.11.1 計算無吸收的基板的折射率(n)

計算沒有膜的基板的折射率。 在基板上無吸收時使用。 需要是單面 mat 基板或雙面研磨基板。

[工具] – [^{1]}k基板及單層膜的 nk 分析] – [計算無吸收的基板的折射率(n)]

(1) 測定條件的設定

🤨 計算無吸收的基板的折射率(n)	—		×
測量條件			
請選擇一種測量方法 ●根據單面反射率計算 〇根據雙面反射率計算 〇根據透射率計算			
 入射角(deg.) 偏振光 0 → 平均 → * 在以下情況下・無法獲得正確的折射率。 當基板有吸收時(尤其是根據透射率計算時誤差會變大)。 基板較薄並且會干擾而不是多次反射時。 測量值會不準確。 如果它是非極化的並且入射角很大(大約70度或更大)・則無 	法確定創	裈 。	
●上一步(B) 下一步(N) 🛛	Car	ncel

從三種類型中選擇測量方法:單面光譜反射率,雙面光譜反射率和透射率。 輸入入射角並選擇極化(s 極化,p 極化,平均值)。

按[下一步]。

(2) 輸入測量值

🤨 計算無吸收的基板的折射率	≝(n)	- 0	×
	基板的單i	面反射率 測定資料	
赺 開啓分光光度計測定檔案			
基板的單面	反射率	4.6	
波長(nm) , 320 321 322 323 323 324 325 326 327 328 329 329	R(%) 4.604726404 4.601008877 4.597332533 4.593696728 4.590100833 4.586544233 4.586544233 4.583026324 4.579546512 4.576104218 4.5772698874 4.572698874	4.5 4.4 象4.3 2 4.2 4.1 4.0 3.9 500 1000 1500 2000	7平
□ 清晰 □ 複製 □ 貼上 3 - 1	插人 ➡️ 删除	波長(nm)	
		●上一步(B) 下一步(N)● Can	ncel

按[叠分光光度計數據]從分光光度計測量數據文件中讀取或直接在表中輸入測量值。 您也可以使用貼上按鈕從 Excel 等檔案中貼上測量值。

按[下一步]。

(3) 色散公式和計算範圍的選擇

🧿 計算無吸收的基板的折射率(n)					
	色散公式和計	算範圍的設定			
色散公式:					
n General1	$n(\lambda) = \sqrt{A_0 + A_0}$	$\lambda^2 + \frac{A_2}{\lambda^2} + \frac{A_3}{\lambda^4} + \frac{A_4}{\lambda^6} + \frac{A_5}{\lambda^8} + A_6\lambda^4$			
	高度設定	清晰			
Wavelength	320.0 🕂 -	2300.0 <mark></mark> nm			
●恢復原始值					
色散公式列表顯示		●上一步(B) 下一	·步(N) o	Car	ncel

選擇色散公式和要計算的波長範圍。

您可以通過按[高度設定]設置色散公式參數的初始值。

如果波長範圍太寬會導致無法合適於色散公式 · 此時請縮小波長範圍或在 "色散公式" 列中選擇線性插值(Table)。

按[下一步]。

(4) 計算

單擊[執行]按鈕以計算板上的 n。

上圖中的實線是根據測量值計算出的 n 的結果,而虛線是根據分佈值從測量值計算出的 擬合 n 的結果。

下圖是在步驟2中輸入的測量值。

Merit 是根據測量值計算出的 n (實線)與擬合結果的 n (虛線)之間的差計算出的 Merit 函數的值。

如果擬合不起作用,請回到步驟 3 選擇其他色散公式或線性插值(Table)來試著計算。 按[保存],可以將其另存為基板數據(Substrate)。

3.11.2 計算具有吸收作用的基板的折射率(n), 吸收係數(k)和內部透射率(Ti)

計算沒有膜的基板的折射率。

在基板上有吸收時使用。

需要是單面 mat 基板或雙面研磨基板。

[工具] – [^{**n**}k基板和單層膜的 n,k 分析] – [計算具有吸收作用的基板的折射率(n) · 吸收係數 (k)和內部透射率(Ti)]

(1) 輸入基板資訊

🤨 計算具有吸收作用的基板的折射率(n),	吸收係數(k)和內部透	—		×		
3	基板資訊					
從基板的反射率或透射率計算基板的n·k·Ti。 需要單面mat基板和雙面研磨基板的測量值。 請輸入雙面研磨基板的厚度。						
↔ 基板的厚度 1 <mark></mark> …mm						
●上一	●上一步(B) 下一步(N)● Cancel					

輸入基板的厚度。

按[下一步]。

(2) 設定測量條件

選擇要使用的測量方法·"根據單面反射率和雙面反射率計算"或"根據單面反射率 和雙面透射率計算"。

僅對應垂直入射。 不對應斜入射的測量(因為無法確定解決方案)。 根據所需的 n 和 k 精度,通常可以將 5°和 12°入射角的測量值當作垂直入射角。 按[下一步]。

(3) 輸入測量值

按[论分光光度計數據]從分光光度計測量數據文件中讀取或直接在表中輸入測量值。 您 也可以使用貼上按鈕從 Excel 等中貼上測量值。

按[下一步]。

(4) 色散公式和計算範圍的選擇

🥶 計算具有吸收作用的基板的折射率(n),	吸收係数(k)和內部透射率(Ti) - 🗆 🗙
色散	1公式和計算範圍的設定
色散公式:	
n Sellmeier	$n(\lambda) = \sqrt{1 + \frac{A_0\lambda^2}{\lambda^2 - A_3} + \frac{A_1\lambda^2}{\lambda^2 - A_4} + \frac{A_2\lambda^2}{\lambda^2 - A_5}}$
k Sellmeier 🗸	$k(\lambda) = \left[n(\lambda) \cdot \left(B_0 \lambda + \frac{B_1}{\lambda} + \frac{B_2}{\lambda^3} \right) \right]^{-1}$ where the second sec
Wavelength 320	.0: 1000.0: nm
◎恢復原始值	
色散公式列表顯示	●上一步(B) 下一步(N)● Cancel

選擇色散公式和要計算的波長範圍。

您可以通過按[高度設定]設置色散公式參數的初始值。

如果波長範圍太寬會導致無法合適於色散公式,此時請縮小波長範圍或在"色散公式" 列中選擇線性插值(Table)。

按[下一步]。

(5) 計算

單擊[執行]按鈕以計算板的 n · k · Ti。

上圖顯示了從測量值計算出的 n · k(實線)以及以分佈方式擬合它們的結果(虛線)。

下圖顯示了在步驟 3 中輸入的測量值和內部透射率的計算結果。

內部透過率不適用於分佈式類型。 由於它是直接從測量值所計算出的值,會存有測量 值的偏差。

在畫面底部 · 有一列用於設定是否平滑和平滑級別 · 必要時請根據需要進行平滑處理。

Merit 是根據測量值計算出的 n,k (實線)與擬合結果的 n,k (虛線)之間的差異計算 出的 Merit 函數的值。數字越小,擬合效果越好。

在其下,顯示色散公式參數。

如果擬合不起作用,請回到步驟4選擇其他色散公式或線性插值(Table)來試著計算。

按[保存],可以將其另存為基板數據(Substrate)。

3.11.3 單層膜的 nk 分析

從光譜反射率和光譜透射率,通過對色散公式進行曲線擬合來分析膜的 n,k 和膜厚度 (d)。

[工具] – [^{1]}k基板與單層膜的 nk 分析] – [單層膜的 nk 分析]

(1) 輸入基板資訊

🧧 單層膜的nk分析						
		基板資訊				
(1) 基板						
Quartz						
表面	(2) 反面					
單層膜 📄	無鍍膜研磨面					
	若要解析吸收服	谟·則需要	是[無鍍膜]	研磨面]	•	
↔ (3) 基板的	厚度 1 <mark></mark> mm					
僅基板有吸	吸收時才需要。	基板無吸い	收時可無視	•		
	 ●上一封 	₽(<u>B</u>)	下一步(N)0	Canc	el

基板

選擇將單層膜製成成膜的基板。建議使用石英(合成石英)。

反面

選擇基本反面狀態。

請選擇「無鍍膜研磨面」或「無反射面(塗墨、MAT 面等)」。

基板的厚度

輸入基板的厚度。僅基板有吸收時才需要。 基板無吸收時可無視。

按「下一步」。

(2) 設定測量條件

	2811.8	E 1/2 1/4		
法犯规 经利用	沢耳	Ξ11〒1十		
調选择——惟測里,	力法			
	入射角 (deg.)	偏振光		
☑ 表面反射率	0	平均	× 1	
☑反面反射率	0	平均		
□ 透射率	0	平均	-	
需要兩種或更多 對於非吸收性薄	種方法來分析吸收 膜,僅選擇一種類	膜。 型。		
需要兩種或更多 對於非吸收性薄容易分析是否存 *在以下情況下 當基板較薄並且 如果測量值不准	種方法來分析吸收 膜, 催選擇一種類 在一個或多個光譜 , 無法獲得正確的r 會干擾而不是多次 確。	膜。 型。 特徵峰或谷 hk。 反射時。	•	

TFV 使用手册

請選擇與輸入測定的種類及入射角、偏光的種類。

解析吸收係數 k · 使用雙面透明基板「表面反射率」·「反面反射率」·「透射率」之中 最少需要測定兩種。

按「下一步」。

(3) 輸入測量值

按[叠分光光度計數據] 從分光光度計測量數據文件中讀取或直接在表中輸入測量值。 您也可以使用貼上按鈕從 Excel 等中貼上測量值。

按「下一步」。

(4) 色散公式和計算範圍的選擇

🦉 單層膜的nk分							
		色散公式利	口計算範圍的	的設定			
色散公式:							
n Cauchy	沒有不均勻	 n(λ)= 	$4_0 + \frac{A_1}{\lambda^2} + \frac{A_2}{\lambda^4}$				
k Sellmeier		· [$B = B \left \right ^{-1}$			
3	沒有不均勻	$k(\lambda) = k(\lambda)$	$n(\lambda) \cdot \left(B_0 \lambda + \right)$	$\left[\frac{D_1}{\lambda} + \frac{D_2}{\lambda^3}\right]$			
☑ 僅分析፤	E常色散	高度	E設定	清晰			
解析範圍							
	最小值		最大	「値」			
膜厚		100		10000	Å		~
	🗌 膜厚度固定						
	最小值		最大	、値			
n		1 🚍		10			
k		0		10			
Wavelength	3	50.0 🗧 -		780.0	nm		
	使用數據點:每	1 🕂 !	貼				
●恢復原始值							
色散公式列表	顯示		●上一步	(B)	下一步(№)◎	Car	ncel

設定色散公式、分析範圍和使用的數據點。

您還可以在此處選擇是否分析n和k的不均匀性。

如果勾選[僅分析正常色散]·則僅分析正常色散(折射率隨波長變短而增加色散)。 如果未勾選·將執行包括異常色散在內的分析。 您可以通過按[高度設定]設定色散公式參數的初始值。

如果波長範圍太寬會導致無法合適於色散公式,此時請縮小波長範圍。

按「下一步」。

(5) 分析

點擊[執行]按鈕開始分析。

上圖是 n 和 k 的分析結果。

下圖顯示了在步驟 3 中輸入的測量值 (實線)以及根據 n 和 k 的分析結果計算出的反 射率/透射率 (虛線)。

Merit 是根據測量值(實線)與根據 n 和 k 的分析結果計算出的反射率/透射率 (虛線)之間的差計算出的 Merit 函數的值。數字越小,擬合效果越好。

膜厚是膜厚的分析結果。

在其下,顯示色散公式參數。

即使 Merit 很小, 膜厚也可能不正確, 因此請檢查膜厚是否合理。 如果擬合不起作用, 請回到步驟4選擇其他色散公式或試著縮小波長範圍。

按[保存],可以將其另存為膜材料數據(Material)。

*單層膜的 nk 分析通過對色散公式進行曲線擬合來估計膜的 n · k 和膜厚度 (d)。檢查 光譜特性、n · k 值和膜厚 · 以查看出現的解是否正確。另外 · 請參閱下一節 "nk 解析 的注意點"。

3.11.3.1 nk 解析的注意點

說明從單層膜的分光特性測定值來解析膜的 n 與 k 時的注意點。 解析膜 n 與 k 時,根據測定精度,基板的選擇,波長範囲等會影響是否可以解析。 另外,有不均值和分散曲線無法用分散式表現等的時候,此時解析困難。

● 基板

基板的屈折率數據為正確是重要的。 基板的屈折率數據不正確時就無法正確的解析。 另外,基板的表面有髒汙和燒傷時也無法正確的解析。 解析用的基板推薦使用無吸收、屈折率為已知的在化學成分上安定的合成石英基板。 但是,例如在石英基板上做成 SiO2 薄膜使成膜,因為屈折率幾乎一樣,所以無法解析。 關於薄膜請使用屈折率不一樣的基板。

● 膜厚

膜厚過薄或過厚時會無法正確的解析。 在分光特性上有峰頂或峰谷一個以上時,就容易達到正確的解。

● 測定

測定值(反射率·透過率)正確是重要的。

極端的例子:如使透過及反射加起來超過 100 或用 \/2 厚使基板反射低下等之不合理論的測 定值時,因為無解所以無法解析。

例如:透過率的測定不正確時,在解析不使用表面反射,裏面反射,透過率3種類的測定値 而是只使用表面反射,裏面反射2種類時所做的解析會比較順利。

若膜為無吸收狀態時,表面反射或是透過率只需其中一個的測定就足夠。

● 波長範圍

因為波長範囲過大的話就無法以1個分散式來表現分散曲線圖 · 所以也有無法解析的情況。 那時候就請試著把波長範圍分開來做解析。

根據不一樣的狀況在每個波長範圍請試著變換分散式。

最後從分散式來計算各波長的 n 與 k,請用直線補間(Table)形式登錄全波長域的數據。

● 分散式的選擇

多 Parameter 分散式有無數的解存在所以無法順利地做解析。

以可視範圍的例子來說,使用 ITO 膜的時候、n 的分散式: Cauchy·k 的分散式: Sellmeier、

; Si 膜的時候、n 的分散式: Cauchy 或是 Sellmeier · k 的分散式: QUADSK 或是 Sellmeier、

也有可以順利解析的例子。

另外,即使吸收為0指定k的分散式做解析,也有無法順利解析的時候。

3.11.4 單層金屬薄膜的 nk 計算

由正面反射率和背面反射率算出金屬膜的 nk。 膜必須足夠厚且透射率為零。

[工具] – [^{1]}k基板和單層膜的 nk 分析] – [單層金屬薄膜的 nk 計算]

(1) 輸入基板資訊

🤨 單層金屬薄膜的nk計算	—		×
基板資訊			
基板			
Quartz			
表面 反面 金圖薄膜 和鐵膜研磨面 ↔ 基板的厚度 1 mm 僅當甚板具有吸收性時才需要基板周 我們建議使用無吸收的基板。	1度。		
●上一步(B)	下一步(№)◎	Can	icel

基板

選擇將單層膜製成成膜的基板。建議使用石英(合成石英)。

基板的厚度

輸入基板的厚度。僅基板有吸收時才需要。 基板無吸收時可無視。

按「下一步」。

(2) 設定測量條件

輸入入射角並選擇極化(s極化·p極化·平均值)。 建議在垂直入射或接近垂直入射時進行測量。

按「下一步」。

(3) 輸入測量值

按[於分光光度計數據] 從分光光度計測量數據文件中讀取或直接在表中輸入測量值。 您也可以使用貼上按鈕從 Excel 等中貼上測量值。

按「下一步」。

(4) 色散公式和計算範圍的選擇

😈 單層金屬薄膜的nk計算				
会 勤八式,	色散公式和計算範圍的設	殳定		
巴威公式: n 直線振信/Table)				
k 直線插值(Table)	¥			
Wavelength	380.0 🚍 -	780.0 <mark></mark> nm		
●恢復原始值				
色散公式列表顯示	●上一步(B)	下一步(<u>N</u>)。	Cano	el

選擇色散公式和要計算的波長範圍。

在金屬薄膜的 nk 計算中,在色散公式列中選擇了線性插值(Table)作為初始值,但您 也可以選擇色散公式。

您可以通過按[高度設定]設定色散公式參數的初始值。

如果波長範圍太寬並且無法適合於色散公式,請縮小波長範圍或在"色散公式"列中選 擇線性插值(Table)。

按「下一步」。

(5) 計算

單擊[執行]按鈕以計算金屬薄膜的 n 和 k。

上圖顯示了從測量值計算出的 n · k(實線)以及以色散公式擬合它們的結果(虛線)。對於線性插值(Table),沒有擬合結果。

對於線性插值(Table),測量值中會有偏差,因此必要時請到畫面底部點擊 [Smoothing $n \cdot k$](平滑度 $n \cdot k$)以調整平滑度。

下圖是在步驟3中輸入的測量值。

偏差度是根據測量值計算出的 n · k(實線)與擬合結果(虛線)之差。數字越小, 擬合度 越好。

在其下,顯示色散公式參數。

對於線性插值(Table),不顯示偏差度和色散公式參數。

如果選擇了一個色散公式,但擬合不起作用,請嘗試在步驟 4 中選擇另一個色散公式 或線性插值(Table)進行計算。

按[保存] · 則可以將其另存為膜材料數據(Material)。

3.12 其它功能

3.12.1 色散資料的作成

可以從功能表的[工具] - [JJF-色散資料編輯] · 編輯使用者定義的色散資料。又或 · 在主視窗中 游標指向基板或膜物質欄時 · 在按跳出視窗的「編集」鍵。

🦉 色散資料編輯				– o ×		
● 色数究科編輯 新聞 · Glass · Film Material	Substrate列表展示 Ma 色数資料的檔名: 備註 標題: 言辞 合数資料的檔名: 備註 標題: 言辞 合数種類的選擇 ● 直線插值(Table) 次長 (nm)	terial列表顯示 色散公式列表摄 色散公式 n: k: n	t示 	預算 備考欄 ● 色散種類的遅 (A部透射率(T) Calc. Ti from k や吸收係数()開始使用Lambert-Beer法則計算內部透射率。	選 了 人	data 輸入欄
	□清晰 □複製 [] 貼上]= 抽	插入 → 删除 公式的λ單位是微	米(不包括Forouhi-Blo	- · · · · · · · · · · · · · · · · · · ·		

● 已存檔的 data 編輯

編輯已存檔的即有 data 時請選擇左側的 list.。

● 建立新檔

建立新的分散 data 時請按[__新增]。

之後選擇基樣或膜物質的種類、輸入檔案名之後按[OK]。

建立新的分散	
○基板(Glass)	⊙ 膜物質(Material)
色散資料的檔名	
ОК	Cancel

- 項目説明
- 【備考欄】

輸入色散資料的 Title、comment、有效範圍

※ 使用分散式時,請務必一定要輸入有效範圍。依據有效範圍不同,計算結果也會有不一 樣的時候。

詳細請參照「3.13.1.3 光學定數」·

【色散種類的選擇】

選擇色散資料的種類

選擇直線插值或各種色散式

【data 輸入欄】

選擇直線插值時,輸入波長,n(折射率),k(吸收係數)

選擇色散式時,輸入色散式的係數

另外,在基板也可以輸入内部透過率。有關内部透過率請參照「3.6.12 基板,媒質的内部透 射率」。

選擇直線插值的話,可從表計算軟體複製資料,按^{13點上(P)}將複製的資料貼上 data 輸入欄。行的插入、削除則按視窗下面的行插入[插入],行削除鍵[削除]。
3.12.2 色散式的種類

每個波長 data 點 table(直線插值) · 或是下面的各色散式都可以用在折射率 n 和吸收係數 k 的色散上。

且玻璃 data(基板、入射介質)和膜物質 data 兩者皆能使用。

[折射率 n 的色散式]	
Name	色散式
Sellmeier	$n(\lambda) = \sqrt{1 + \frac{A_0 \lambda^2}{\lambda^2 - A_3} + \frac{A_1 \lambda^2}{\lambda^2 - A_4} + \frac{A_2 \lambda^2}{\lambda^2 - A_5}}$
Sellmeier2	$n(\lambda) = \sqrt{1 + A_0 + \frac{A_1 \lambda^2}{\lambda^2 - A_3^2} + \frac{A_2}{\lambda^2 - A_4^2}}$
Sellmeier3	$n(\lambda) = \sqrt{1 + \frac{A_0\lambda^2}{\lambda^2 - A_4} + \frac{A_1\lambda^2}{\lambda^2 - A_5} + \frac{A_2\lambda^2}{\lambda^2 - A_6} + \frac{A_3\lambda^2}{\lambda^2 - A_7}}$
Sellmeier4	$n(\lambda) = \sqrt{A_0 + \frac{A_1 \lambda^2}{\lambda^2 - A_3} + \frac{A_2 \lambda^2}{\lambda^2 - A_4}}$
Sellmeier5	$n(\lambda) = \sqrt{1 + \frac{A_0\lambda^2}{\lambda^2 - A_5} + \frac{A_1\lambda^2}{\lambda^2 - A_6} + \frac{A_2\lambda^2}{\lambda^2 - A_7} + \frac{A_3\lambda^2}{\lambda^2 - A_8} + \frac{A_4\lambda^2}{\lambda^2 - A_9}}$
SellmeierT1	$n(\lambda) = \sqrt{A_0 + \frac{A_1 \lambda^2}{\lambda^2 - A_2}}$
SellmeierT2	$n(\lambda) = \sqrt{A_0 + \frac{A_1 \lambda^2}{\lambda^2 - A_2} + A_3 \lambda^2}$
SellmeierX1	$n(\lambda) = \sqrt{1 + \frac{A_0 \lambda^2}{\lambda^2 - A_3^2} + \frac{A_1 \lambda^2}{\lambda^2 - A_4^2} + \frac{A_2 \lambda^2}{\lambda^2 - A_5^2}}$
General1	$n(\lambda) = \sqrt{A_0 + A_1\lambda^2 + \frac{A_2}{\lambda^2} + \frac{A_3}{\lambda^4} + \frac{A_4}{\lambda^6} + \frac{A_5}{\lambda^8} + A_6\lambda^4}$
General2 (Old Schott)	$n(\lambda) = \sqrt{A_0 + A_1 \lambda^2 + \frac{A_2}{\lambda^2} + \frac{A_3}{\lambda^4} + \frac{A_4}{\lambda^6} + \frac{A_5}{\lambda^8}}$
Cauchy	$n(\lambda) = A_0 + \frac{A_1}{\lambda^2} + \frac{A_2}{\lambda^4}$
Hartmann1	$n(\lambda) = A_0 + \frac{A_1}{\lambda - A_2}$
Hartmann2	$n(\lambda) = A_0 + \frac{A_1}{\left(\lambda - A_2\right)^2}$
Herzberger	$n(\lambda) = A_0 + A_1 \lambda^2 + \frac{A_2}{(\lambda^2 - 0.168^2)} + \frac{A_3}{(\lambda^2 - 0.168^2)^2}$

Herzberger2	$n(\lambda) = A_0 + \frac{A_1}{(\lambda^2 - 0.028)} + \frac{A_2}{(\lambda^2 - 0.028)^2} + A_3\lambda^2 + A_4\lambda^4 + A_5\lambda^6$
QUAD	$n(\lambda) = A_0 + \frac{A_1}{\lambda^2}$
QUADSK	$n(\lambda) = A_0 + A_1 \lambda + A_2 \lambda^2$
Conrady	$n(\lambda) = A_0 + \frac{A_1}{\lambda} + \frac{A_2}{\lambda^{3.5}}$
Handbook1 (Handbook of Optics)	$n(\lambda) = \sqrt{A_0 + \frac{A_1}{(\lambda^2 - A_2)} - A_3 \lambda^2}$
Handbook2 (Handbook of Optics)	$n(\lambda) = \sqrt{A_0 + \frac{A_1 \lambda^2}{(\lambda^2 - A_2)} - A_3 \lambda^2}$
Extended (ZEMAX)	$n(\lambda) = \sqrt{A_0 + A_1\lambda^2 + \frac{A_2}{\lambda^2} + \frac{A_3}{\lambda^4} + \frac{A_4}{\lambda^6} + \frac{A_5}{\lambda^8} + \frac{A_6}{\lambda^{10}} + \frac{A_7}{\lambda^{12}}}$
Extended2 (ZEMAX)	$n(\lambda) = \sqrt{A_0 + A_1\lambda^2 + \frac{A_2}{\lambda^2} + \frac{A_3}{\lambda^4} + \frac{A_4}{\lambda^6} + \frac{A_5}{\lambda^8} + A_6\lambda^4 + A_7\lambda^6}$
Extended3 (ZEMAX)	$n(\lambda) = \sqrt{A_0 + A_1\lambda^2 + A_2\lambda^4 + \frac{A_3}{\lambda^2} + \frac{A_4}{\lambda^4} + \frac{A_5}{\lambda^6} + \frac{A_6}{\lambda^8} + \frac{A_7}{\lambda^{10}} + \frac{A_8}{\lambda^{12}}}$
Buchdahl	$n(\lambda) = A_0 + A_1 \omega(\lambda) + A_2 \omega(\lambda)^2, \omega(\lambda) = \frac{\lambda - A_3}{1 + 2.5(\lambda - A_3)}$
DRUDE	$n^{2}(\lambda) - k^{2}(\lambda) = A_{0} - \frac{A_{1}A_{2}^{2}\lambda^{2}}{\lambda^{2} + A_{2}^{2}}$
LorentzianK	$n(\lambda) = \sqrt{A_0 + k(\lambda)^2 + A_1 \lambda^2 \frac{(\lambda^2 - A_2^2)}{(\lambda^2 - A_2^2)^2 + A_3^2 \lambda^2}}$
Forouhi-Bloomer	$n(E) = n(\infty) + \frac{B_0 E + C_0}{E^2 - BE + C}$ $B_0 = \frac{A}{Q} \left(\frac{-B^2}{2} + E_g B - E_g^2 + C \right), \ C_0 = \frac{A}{Q} \left((E_g^2 + C) \frac{B}{2} - 2E_g C \right),$ $Q = \frac{1}{2} (4C - B^2)^{\frac{1}{2}}, \ E = \frac{hc}{\lambda}$ h: Planck's constant, c: Light speed, E 的單位為: eV.

 $A_0 \cdot A_1 \cdot A_2 \cdot A_3 \cdot A_4 \cdot A_5 \cdot A_6 \cdot A_7 \cdot A_8 \cdot A_9$ 為物質決定的定數。 λ的單位為µm(不包括 Forouhi-Bloomer)。

[吸收係數 k 的色散式]

Name	色散式
Sellmeier	$k(\lambda) = \left[n(\lambda) \cdot \left(B_0 \lambda + \frac{B_1}{\lambda} + \frac{B_2}{\lambda^3} \right) \right]^{-1}$
Cauchy	$k(\lambda) = B_0 + \frac{B_1}{\lambda^2} + \frac{B_2}{\lambda^4}$
Exponential	$k(\lambda) = B_0 \exp(B_1 \lambda^{-1})$
QUADSK	$k(\lambda) = B_0 + B_1 \lambda + B_2 \lambda^2$
DRUDE	$2n(\lambda)k(\lambda) = \frac{A_1 A_2 \lambda^3}{\lambda^2 + A_2^2}$
LorentzianK	$k(\lambda) = \sqrt{\frac{0.5}{n(\lambda)} \times \frac{A_1 A_3 \lambda^3}{(\lambda^2 - A_2^2)^2 + A_3^2 \lambda^2}}$
Forouhi- Bloomer	$k(E) = \frac{A(E - E_g)^2}{E^2 - BE + C}$ $E = \frac{hc}{\lambda}$ h: Planck's constant c: Light speed E 的單位為: eV

 $B_0 \cdot B_1 \cdot B_2$ 為物質決定的定數。

λ的單位為μm(不包括 Forouhi-Bloomer)。

3.12.3 不均勻資料作成,編輯

定義的不均勻資料作成或編輯·由 menu 選擇[工具-■不均勻資料編輯...]。又·主視窗中 用游標指向不均勻欄時·在按跳出視窗的「編集」鍵。

🝑 不均勻資料編輯						×	
🗋 新增 🕼 變列	更檔名 🛑 複製	≻刪除					
Minus-1	不均勻資料的檔名	ž:				_	
Plus-1	備註 標題:						↓ (_{備老欄})
Plus-2	註解:					-1-	
	不均匀參數					-	〕
	n增減量:	0.00	400	-			C parameter 脑 λ 欄
	k增減量:	0.00	100 A		:		
	預覽					-	
	Material :	~	膜厚:	1000 A			
		欲預覽顯示,請於	Material欄選擇使用	物質。		-	`
							~ 預覽欄
	L .				×		
	<- 基板側		物理膜厚		入射媒介側	->	
		√ 適用	◎ 重設		👖 Clos	e	

● 既存檔案編輯

編輯已存檔案,由畫面左側的 list 中選擇。

● 新資料作成

作成新的不均勻資料,按[**〕**新增]鍵。 其次,輸入不均勻資料的名字(檔名),點選[OK]。

新增不	均勻資料		
不均	勻資料的檔名		
	ОК	Cancel	

● 項目說明

【備考欄】

輸入不均勻資料的標題、註解。

這些將顯示於主視窗的不均勻欄與游標標記一致時所彈跳出的視窗內。單純為紀錄,並不會 影響不均勻數據。

【不均匀 parameter 輸入欄】

個別輸入n的増減量、k的増減量。輸入其右側可增減的膜厚Step。

※膜厚 Step 精密計算時將花上較多的時間。

【預覽欄】

由 Material 欄選擇膜物質,不均勻適合此膜物質時所顯示的預覽。在膜厚欄中輸入膜厚後,預覽的膜厚軸最大值將改變。

如次頁所示。

● 不均勻資料的設定例

n 增減量設定-0.005 · 膜厚 Step 設定為 100 Angstrom。 此狀況下 · 膜厚每增加 100 Å 折射率 n 則每次減少-0.005。 k 增減量設定為 0 · 故吸收係數 k 無變化。

預覽欄中,選擇 ZrO2, 膜後也將被設定為 1000 Angstrom。 曲線圖中,將顯示 ZrO2 的膜厚膜厚 1000 Å 時, n 的變化。 預覽的折射率對象波長為主視窗中所設定的中心波長。

※ 注意: 不均勻層的膜厚指定為光學膜厚時,不均勻層的折射率 n 會產生變化,故指定 的光學膜厚與實際的光學膜厚有所差異。

	Thick	iness		n and k	profile	
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均匀
1	.2500	75.56	Al2O3	.0000	.0000	
2	.5000	121.97	ZrO2	.0000	.0000	Minus-1
3	. nd/λ= 0.4932 (a		(at 500.0nm)	.0000	.0000	
V d= 121.97 nm 不均勻層						

下記例中,第2層 Thickness 指定值為 0.5,實際值為 nd/λ=0.4932。

3.12.4 與其它軟體相連結(數值和圖的複製、貼上)

曲線圖或數值可以經由剪貼簿貼到其它軟體上。

● 將數值貼到其它軟體

於曲線圖上按右鍵·選擇「臺複製數值資料」·然後貼到表計算軟體(如:Microsoft(R) Excel) 等。

● 將圖表貼到其它軟體

在圖表上按右鍵·選擇「複製圖到剪貼簿」·指定形式和大小後按 OK 鍵·就會複製到剪貼簿·然後貼到表計算軟體(如:Microsoft(R) Excel)等即可。

● 圖表存檔

曲線圖也能以圖片檔形式儲存。在圖上按右鍵,選擇「醫圖表存檔」,指定形式和大小後再按OK鍵,輸入檔名存檔。

● 將膜資料貼到其它軟體

在工作表標籤上按右鍵,選擇[●複製膜資料],然後貼到表計算軟體(如:Microsoft(R) Excel)等。

🧿 TFV — 🗆	×	
檔案(E) 編輯(E) 表示(V) 工具(I) 表示說明(H)		
🚵 🗟 🔛 🛄 💆 3D \succ 🦙 🗽 🗣 🗣 🔩 🎂		🕅 Mineselt Fred - David
380 - 780 nm, step 1 nm Petall Param.▶ 0 - 60 deg, step 1 deg, 500 nm ✓ Sheet ▼ Shout Chantel Ch	< →	Bit Materiand To Doubl C III A B C D E F G H I J K 1 The H 2 D E F G H I J K 2 Dertert 1 The HB/CSO-HOTT) Market Market

3.12.5 導入 Essential Macleod 數據

您可以導入 Essential Macleod 的 Material 和 Substrate。此外,也可以讀取設計數據(dds 文件)。

● 導入 Material

從主視窗 Menu 中,選擇[文件] - [導入] - [導入 Essentials Macleod materials 數據]。

一般情況下,註冊在 Macleod Standard 文件夾中的 Material,一覽表顯示在畫面左側。如 果要導入其他數據,請單擊[選擇 Macleod 文件夾]按鈕並指定文件夾。

在波長欄位中輸入波長時,nk欄位中會顯示波長的nk。請當作參考使用。

點擊畫面下半部的"在名稱末尾添加字符後導入"·將會添加指定的字符到 Material 名稱 末尾後並導入。

如果在畫面下半部的"當名稱相同時"的欄位中選擇"覆蓋"的話,若遇到 Essential Macleod 和 TFV 的 Material 名稱相同時,執行導入,TFV 的 Material 名稱將會被覆蓋。選擇"在名稱末尾添加數字"時,將會在 Essential Macleod 的 Material 名稱末尾添加數字, TFV 的 Material 名稱將不會被覆蓋並執行導入。

按"導入"按鈕時,在 Essential Macleod 選擇欄中所複選標記的 Material 將會導入 TFV。

• 導入 Substrate

從主視窗 Menu 中,選擇[文件] - [導入] - [導入 Essential Macleod 的 Substrate 數據]。

Essential Macleod 業評 Ag 0.05000 2.8700 Ag Al 0.066667 5.57259 Al Al2O3 1.66650 0.00000 Al2O3		TFV Substrate ADC1(HOYA)	n 1.62574	k	Ti(%)	^
2詳釋 Material n k Tří(約) 導入後的Substrate名稱 △ Ag 0.05000 2.87000 △ Al 0.666675 57255 Al △ Al2O3 1.66650 0.00000 Al2O3		Substrate ADC1(HOYA)	n 1.62574	k	Ti(%)	^
□ Ag 0.05000 2.87000 Ag □ AI 0.66667 5.57259 AI □ AI2O3 1.66650 0.00000 AI2O3		ADC1(HOYA)	1.62574	0.00000		
□ AI 0.66667 5.57259 AI □ AI2O3 1.66650 0.00000 AI2O3		100010		0.00000	100.00000	
AI2O3 1.66650 0.00000 AI2O3		AI2O3(Subst)	1.77425	0.00000	100.00000	
		ALON(Subst)	1.79779	0.00000	100.00000	
Glass 1.52141 0.00000 99.98397 Glass	200	APEL	1.54936	0.00000	100.00000	
HfO2 1.94230 0.00000 HfO2	导入	BAC4(HOYA)	1.57467	0.00000	99.95997	
MgF2 1.38570 0.00000 MgF2		BACD2(HOYA)	1.61355	0.00000	99.97999	
Na3AIF6 1.35000 0.00000 Na3AIF6		BACD4(HOYA)	1.61874	0.00000	99.97999	
SiO2 1.46235 0.00000 SiO2		BACD5(HOYA)	1.59465	0.00000	99.97999	
Ta2O5 2.14545 0.00000 Ta2O5		BACD11(HOYA)	1.56917	0.00000	99.97999	
TiO2 2.35786 0.00045 TiO2		BACD14(HOYA)	1.60882	0.00000	99.95997	
Y2O3 1.79819 0.00013 Y2O3		BACD15(HOYA)	1.62915	0.00000	99.97999	
ZrO2 2.06811 0.00006 ZrO2		BACD16(HOYA)	1.62631	0.00000	99.97999	
		BACD18(HOYA)	1.64517	0.00000	99.95997	
A statistic and a statistic an		BACED5(HOYA)	1.66591	0.00000	99.97999	
)选择全部(A) 取消选择(U)		BAF2(CDGM)	1 57636	0 00000	99 96996	~

Essential Macleod 無法區 分材料數據和基板數據, 因此兩者都混合顯示在列 表中。若想選擇請在選擇 欄中的複選標記框中手動 選擇並執行導入。

一般情況下,註冊在 Macleod Standard 文件夾中的 Material,一覽表顯示在畫面左側。如 果要導入其他數據,請單擊[選擇 Macleod 文件夾]按鈕並指定文件夾。

在波長欄位中輸入波長時 · n · k 和 Ti 欄位中會顯示波長的 n,k 和內部透射率 · 在基板厚度 欄位中輸入厚度時 · Ti 欄位中會顯示厚度的內部透射率 · 請當作參考使用 ·

點擊畫面下半部的"在名稱末尾添加字符後導入" ·將會添加指定的字符到 Material 名稱 末尾後並導入。

如果在畫面下半部的"當名稱相同時"的欄位中選擇"覆蓋"的話,若遇到 Essential Macleod 和 TFV 的 Material 名稱相同時,執行導入,TFV 的 Substrate 名稱將會被覆蓋。選擇"在名稱末尾添加數字"時,將會在 Essential Macleod 的 Material 名稱末尾添加數字, TFV 的 Substratel 名稱將不會被覆蓋並執行導入。

按"導入"按鈕時,在 Essential Macleod 選擇欄中所複選標記的 Material 將會導入 TFV。

還會導入具有相同名稱的內部透射率。

● 讀取設計數據(dds 文件)

您可以從主視窗 Menu 中的[文件] - [打開]中讀取 Essential Macleod 設計數據(dds 文件)。可以讀取中心波長,入射角,基板,入射介質,層數,各層的膜厚/物質和註釋。如果 TFV 中不存在同名物質時,將會自動導入物質。

3.12.6 ZEMAX 玻璃數據導入

現在, 您可以導入光學設計軟體 ZEMAX 的玻璃數據(AGF 文件)。 [檔案] - [導入] - [導入 Zemax OpticStudio Glass 目錄(AGF 文件)] 點擊[打開 Zemax Glass 目錄(AGF 文件)]按鈕, 然後選擇 AGF 文件。 如果 TFV 中已經存在具有相同名稱的玻璃數據, 它將被覆蓋。注意不要意外覆蓋玻璃數據。

▲打開Zemax Glass目	錄(AGF文件)			
Wavelength(nm)	500 Substrate thickness(mm)	1		
Zemax OpticStudio			TFV	
	請打開Zemax AGF文件。	導入	Substrate N-KZFS8(SCHOTT) N-LAF2(SCHOTT) N-LAF3(SCHOTT) N-LAF3(SCHOTT) N-LAF2(SCHOTT) N-LAF3(SCHOTT) N-LAF32(SCHOTT) N-LAF32(SCHOTT) N-LAF32(SCHOTT) N-LAF32(SCHOTT) N-LAF32(SCHOTT) N-LAF35(SCHOTT) N-LAF36(SCHOTT) N-LAF36(SCHOTT) N-LAF36(SCHOTT) N-LAF36(SCHOTT)	n 1.73251691737351 1.64642778304297 1.7535665107268 1.72563309584088 1.76200170456955 1.79757015187912 1.80464540034742 1.79613394979602 1.78147262479808 1.75197263134814 1.81043317962182 1.6580009230874
選擇全部(A) 取	消選擇(<u>U)</u>		N-LAK8(SCHOTT)	1 72061799330405
] 在名稱末尾添加字符並	導入 要添加的字符: (ZEMAX)			
當名稱相同時: 覆蓋	×			
: Zemax和TFV的名	稱重複			關閉

3.12.7 導出到 ZEMAX

您可以將設計數據或光譜數據導出到光學設計軟體 ZEMAX 的 Coating File 中。 從主視窗選單中, 選擇[檔案]-[導出]-[導出到 ZEMAX Coating File…]。

🧕 Zemax Coating File Data				
檔案(E)				
📄 新增 🤔 打開ZEMAX Coating File(Q)	. 🚽 儲存檔案(S) 🚼 另存新檔(A) 保存	模型 ▼		
Zemax Coating File				
C:\TFV\ZEMAX\Coatings\COAT	ING_1.DAT			
Material Taper Coating Table I	deal Ideal2 Encrypted			
AIR	Wavelength(µm) n k			
N15	0.4 2.5571707 0			
AL2O3	0.46 2.4579060 0			
ALUM	0.5 2.4190751 0			
RK7	0.7 2.3317272 0			
CEE3	0.8 2.3131206 0			
LA2O3	1.0 2.2922206 0			
MGF2	2.0 2.2859449 0			
THF4				
ZNS				
ZRO2				
Material删除				
導出				
導出類型	TFV設計數據			
○光學膜厚(不包括基板)	Sheet1		4	
 ○光學膜厚(包括基板) ○物理膜厚(て包括其板) 		追加至	JZEMA	×
○物理膜厚(个已拍埜似)		Coati	ng File.	
○將計算結果導出為Table數據				
				188
			肺	閉

新增	創建一個新的 ZEMAX Coating File。
剂打開 ZEMAX Coating File	讀取 ZEMAX Coating File。用於將設計數據和光譜數據
	添加到現有的 ZEMAX Coating File 中。
☐儲存檔案	覆蓋並保存 ZEMAX Coating File。
🕌 另存新檔	將 ZEMAX Coating File 另存新檔。

注意:ZEMAX Coating File 的默認文件名為 "COATING.DAT" 。 根據 ZEMAX 文檔 · 此 文件在 ZEMAX 安裝過程中將被覆蓋 · 不建議修改 。 建議使用其他名稱另存新檔。

ZEMAX Coating File 的內容顯示在[Material] · [Taper] · [Coating] · [Table]...選項上。 每 個選項之下都有一個刪除按鈕 · 您可以刪除不必要的項目 ·

● 選擇導出類型

在畫面底部的導出欄位,選擇要導出的內容。

光學膜厚(不包括基板)	將設計數據(每一層的膜厚,每種物質的 nk 數據)導出到 [Material]和[Coating]部分。 光學膜厚:將膜厚導出為光學膜厚(FWOT)。
光學膜厚(包括基板)	物理膜厚:將膜厚導出為物理膜厚(μm)。 選擇光學膜厚時 · 請確保 TFV 的中心波長和 ZEMAX 的控制波長 相同。
物理膜厚(不包括基板)	ZEMAX 必須包含不透明的基板作為一層。 如果基板不透明·請選擇"包括基板"。
物理膜厚(包括基板)	將基板追加為零厚度圖層並導出。
將計算結果導出為 Table 數據	將光譜數據(計算結果)導出為 Table 數據。 將指定入射角和波長的反射率,透射率和相位導出到[Table]部 分。

在[TFV 設計數據]欄位,選擇要導出的 TFV 設計數據(sheet 名稱)。

● 導出設計數據

當按下[追加到 ZEMAX Coating File ...]按鈕時,將顯示以下畫面。

在ZEMAX Coating File 使用中的Material:		Coating名稱		
		Sheet1		
Coating石碑		Material名稱		
AR WAR HEAR1 HEAR2		TFV TFV Material名稱 AI2O3	Zemax Zemax Material Al2O3	名稱
Matorial 名稱		ZrO2 MgE2	ZrO2 MaE2	
AIR N15 AL2O3 ALUM		□ 允許覆蓋Materi 計算波長範圍和間	al 辆	
BK7 CEF3		380 🖶 -	780 nm, step	1 nm 重啟
ZA2O3 [Zemax Coating File的限 可以註冊的Coating數量、 名稱中不能使用空格和特列 有關更多信息,請參見《Z	制] Materia 集字符、: 2emax用	Ⅰ數量和層數有限制。 全形文字。 戶手冊》。		Cancer

輸入 Coating 名稱和 ZEMAX Material 名稱,以使其與 ZEMAX Coating File 中使用的名稱 不重覆。

如果要覆蓋現有的 Material 名稱,請勾選[允許覆蓋 Material]。

如果在 TFV 設計數據中使用了 dn 和 dk,則可以將它們註冊為單獨的 Material。

計算的波長範圍和間隔欄位用於指定 Material 的 nk 色散數據的數據點。請注意·ZEMAX 無法接受太多數據。在 2009 版本的 ZEMAX 中·每種 Material 的色散數據點數量最多為 120。

有關 ZEMAX 的限制事項,請參閱《 ZEMAX 用戶指南》。

單擊[導出]按鈕以導出到 ZEMAX Coating File。

注意:此時,僅保留在內存中,尚未保存到檔案裡。最後,請儲存檔案。

● 導出光譜數據

當選擇[將計算結果導出為 Table 數據]作為導出類型並單擊[追加到 ZEMAX Coating File...]按 鈕時,將顯示以下畫面。

Table Parameters for Zemax		- 0	
Table名稱			
Sheet1			
入射角(deg.)	^	波長(nm)	^
	0		320
	1		321
	2		322
	3		323
	4		324
	5		325
	6		326
	7		327
	8		328
	9		329
	10		330
	11		331
	12		332
	13		333
○法庭 ○ 佐利 ○ 比 ト ● 括 3 ○ 西原	A	い法能に対対の比とも近ろうの時代	
□/月町1 10 夜歌 □ 畑工 3 個人 5 間床		□洞町□複数□畑工ゴ掴入ゴ間床	
重啟		₿ 導出 C	ancel

請輸入工作台名稱,入射角和波長。

當您按下[重設]按鈕時·將自動輸入在主視窗中設置的波長範圍和入射角範圍的內容。 或者·您可以使用畫面底部的工具欄貼上 Excel 等的入射角和波長。

單擊[導出]按鈕以導出到 ZEMAX Coating File。

注意:此時,僅保留在內存中,尚未保存到檔案裡。最後,請儲存檔案。

3.12.8 主視窗的 Parameter 表示

在主視窗的「Parameter 表示/非表示切換鈕」·可以切換蒸鍍 control Parameter · 最適化 Parameter · 製造誤差解析 Parameter 的表示/非表示。

雖然通常會自動切換表示/非表示,此篇內容請使用在想手動切換的場合。

3.12.9 顯示 "Home" 按鈕,將薄膜厚度恢復為初始值

在主視窗中,您可以顯示"Home"按鈕以利將所選圖層的薄膜厚度恢復為初始值。 操作與按 Home 鍵相同。

如果在主視窗 Menu 中選擇[工具] -[選項] - [滑動尺與上下鍵]中點選 "在主視窗中顯示 Home 按鈕" ·在 主視窗將會顯示 Home 按鈕。

按下 Home 按鈕時,所選圖層的薄膜 厚度會恢復為初始值。 操作與按 Home 鍵相同。 有關 Home 鍵的詳細內容,請參閱 "3.4.1 膜厚變 更", "的使用鍵盤變更膜厚。

3.12.10 薄膜計算用工具

TFV · 附有簡易計算關於薄膜的「薄膜計算工具」。啟動「薄膜計算工具」· 由 menu[工具]-選擇[▲薄膜計算工具]。

如下圖所顯示。

薄膜計算工具·有由λ/4 膜的測定值計算折射率的機能、兩個面的合計反射率計算機能·3 層等膜計算功能。

😭 IFYMise	
№4膜的曲折率 厚膜的反射率 等価膜	
 反射率入力方法 ○ 絶對値 	
● 相對値(reference=100)	
〇相對值(sample=100)	
Reference基板	
Quartz 👻	
範本基板	
Quartz 🗸	
在Peak的波長	按此鍵可切換語言。
(nm)	實際上語言切換是在薄膜計算功能重新
在Peak的測定值(reference=100)	2的動才會實行。
(%)	
在分光分度計等,田測定的反射率計算 Peak值為1/4時的折射率。	

【λ/4 膜的折射率】

由單層膜的反射率測定 Peek 值來計算折射率的功能率。

😭 TFYMisc				
₩4膜的曲折	率 厚膜的反射	率 等価膜		
反射率入力方法 ◎ 絕對値 ◎ 相對値(reference=100) ◎ 相對値(sample=100)				
Reference <u>基</u>	板			
Quartz	✓ 1	.465566		
範本基板				
N-BK7(S0	CHOTT) 🔽 1	.525319		
在Peak的波	長 長			
450	450 (nm)			
在Peak的測定值(reference=100)				
620	(%)	22.106520 %		
- <u></u> 博妙拆射效				
2.057307				
在分光分度計等,由測定的反射率計算 Peak値為λ/4時的折射率。				

全部輸入時,可顯示膜的折射率。

反射率入力方法 絕對值:測得反射率為絕對值時選擇。 相對值(reference=100):測得反射率為絕對值時選 擇 相對值(sample=100):sample與reference與一般相 比測得為相反位置時選擇。 reference基板 選擇 reference基板。可直接輸入折射率。 sample基板 選擇 sanple基板。可直接輸入折射率值。 在 Peak的波長。 在 Peak 的波長。

輸入在 pack 的測定值。

【厚膜的反射率】

計算兩個面的合計反射率功能。

🍓 TFYMise		
λ4膜的曲折率 厚膜的反射率 等価膜		
f計算兩個面的合計反射率 (k=0)		
第1面的反射率		
1.5 %		
第2面的反射率		
4.0 %		
合計反射率		
計算兩個面的coherent沒出現時的反射率(僅只是多重反射時的反射率)		

面1的反射率 輸入第1面的反射率。 面2的反射率

輸入第2面的反射率。

全部輸入時,可顯示膜的反射率。

※ 僅有在基板等膜沒有吸收時才能正確計算。

【等価膜】

將某折射率的λ/4 膜,移至另 2 種折射率的 3 層膜裡,呈現與反射率相同一般的功能。作為 實際的膜材料, 欲將不存在的折射率λ/4 膜與已存在的兩種類膜材料做交換時膜使用。

左側為,低折射率-高折射率-低折射率構成的3層膜,

右側為,高折射率-低折射率-高折射率構成的3層膜。

波長 λ ·等価膜的反射率雖與原 $\lambda/4$ 膜的相同·波長與 λ 有差距時反射率將會改變·與其由 2 種類的解來選,不如請選擇所期望的一方。

3.13 環境設定

3.13.1 操作設定

TFV 的初期設定和動作設定等 · 請按工具列的操作鍵 🦺 · 或從功能上表選擇[工具] - [🎂 設 定] ·

從左側選單選擇想設定的項目。

3.13.1.1 啟動

設定 TFV 的開啟狀態。

若先設定好經常使用的光譜、入射角範圍,方便每次使用。

♥ 週頃	
啟動	啟動設定
薄膜厚度	計算範圍
◎光學常數	光譜範圍
滑動尺與上下鍵 	 設置單個光譜
■田線園	Type 波長 ¥ 單位 nm ×
二二二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、	380 - 780 step 1 (nm)
·····································	
▶ 顏色計算	○促又作中調取詳細設置。
→製造錯誤	
相位和群延遲	入射角範圍
+ Stack	0 - 60 , step 1 (deg)
▶最適化	入射角特性和EFI的計算光譜。
其他	500 (nm)
語言	膜資料文件
	啟動時開放檔案
	Sheet1.flm 瀏覽(B)
	R,T,A單位
	% -
	光譜曲線圖與入射角曲線圖的R,T,A,OD,Phase別整列方法
	OK Casad

[光譜範圍]

指定開啟時的光譜範圍

選擇「單一光譜範圍設定」,就可以設定開始光譜·終了光譜·光譜間隔。

選擇「詳細光譜範圍設定」·從「参照...」鈕指定光譜範圍設定檔案後、保存在檔案裡的詳細 光譜範圍設定可以於啟動時適用。

[入射角範圍]

指定開啟時的入射角範圍

[啟動時開啟的檔案]

指定開啟時 Sheet1 所讀取的膜資料

[主視窗的 Sheet 數]

設定啟動時表示的 Sheet 數。最多可以設定到 20 個 Sheet 為止。

[Stack 視窗的 Sheet 數]

設定 Stack 視窗表示的 Sheet 數。最多可以設定到 20 個 Sheet 為止。

[光譜曲線圖與入射角曲線圖的 R,T,A,Phase 別整列方法]

設定光譜曲線圖與入射角曲線圖的 R,T,A,Phase 別整列方法。

3.13.1.2 膜厚

設定表示在主視窗膜數據欄的膜厚形式。

😈 選項			
啟動	薄膜厚度設定		
薄膜厚度	顯示列		
》光學常數	1. 顯示光學薄膜厚度和物理薄膜厚度	~	
「「「」」」 □ □ 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	厚度留位		
- 血感回 ◎ 光譜・入射角 複合圖表	F/及手回		
▲蒸鍍控制	光学膜厚		
電場強度分布	Full Wave Optical Thickness (nd/A)	~	
顏色計算	物理膜厚和中心波長	_	
製造錯誤	nm	*	
▶ 最適化	優先		
其他	光學膜厚度		
		Cano	cel

膜厚列的表示	(1) 表示光學膜厚·物理膜厚兩種				
方法	Thickness Thickness				
	No. nd/λ Å No. QWOT nm				
	(Z) 六衣小兀字脵序 Thickness				
	No. nd/λ No. QWOT				
	1 .2500 1 1.0000				
	(3) 只表示物理膜厚				
	Thickness Thickness				
	1 75.56 1 755.6				
	(4)自動切換表示光學模厚·物理模厚(先前版本的表示方法)				
	Thickness				
	No. nd/A or Å				
膜厚的單位	物理膜厚的單位: Å, nm, μ m 或是 mm				
	光學膜厚的單位: nd/ λ 或是 λ /4 輸入 1 為 QWOT 単位				
	※選擇表示方法(4)時·物理膜厚的單位固定為:Å·光学膜厚的單位固				
	定為:nd/λ				
優先	同時表示光學膜厚·物理膜厚時·設定優先表示光學膜厚或物理膜厚				
	[優先表示光學膜厚時的動作]				
	變更了中心波長與屈折率時,光學膜厚的表示值會被固定,物理膜厚會被				
	變更。				
	在計算使用光學膜厚的表示值。				
	[優先表示物理膜厚時的動作]				
	變更了中心波長與屈折率時,物理膜厚的表示值會被固定,光學膜厚會被				
	參更。				
	在計算上會使用被表示的物理膜厚。				

3.13.1.3 光學定數

分光特性的計算光譜會由從基板或膜物質的光學定數的有効波長範圍外的光學定數的計算方 法來設定。

選擇「外挿」時

選擇「使用最小波長/最大波長 n,k」時

3.13.1.4 滑動尺與上下鍵設定

設定起動膜厚變更 Slide bar 與膜 Data 的 Up down 鍵時的膜厚變化量。

[滑動尺(膜厚 control)]

光學膜厚·物理膜厚以各個單位來設定。

寬度 :指定滑動尺從一端到另一端移動時變化的寬度。

Step : 指定滑動尺1個單位的變化量。 使用箭頭鍵讓膜厚變化時的值也是按1次鍵時的變化量。

[膜數據上的上下鍵增減單位]

光學膜厚	在光學膜厚欄指定按上下鍵時每個單位的變化量。
物理膜厚	在物理膜厚欄指定按上下鍵時每個單位的變化量。
do	左 人。 卿作宁协上下键时的终儿里,
an	住 UII 闸拍 上 按 时 的 愛 化 里 。
dk	左 dl 蜩华宁读上下碑咭的絲化昙。
UK	任 UK 闸泊足仅工下姚时的爱儿里。
Toolina	在 Tooling 欄指定按上下鍵時的變化量。
leenig	
Filter	在 Filter 欄指定按上下鍵時的變化量。
Start	在 Start 欄指定按上下鍵時的變化量。
周期層倍率	在周期層倍率欄指定按上卜鍵時的變化量。

3.13.1.5 圖設定

圖的表示或動作設定

🍯 選項		
啟動	圖設定	
薄膜厚度	□ 顯示圖表標題	
光學常數	Z Zoom有効	
/ <i>简</i> 朝尺與上下鍵	一之000m月3月 物介冯母士碑分士工作由	
出線回	按注肩跳左雖住右下把戈	
无亩·八別月 恆口圖衣 表鐘协制		
雷堤砷度分布		
· 顏色計算	Scroll有效	
製造錯誤	也介海母大领作电 则发动回来	
最適化	按注肩與右疑把戈,則把動圖衣	
其他		
語言		
	☑ 曲線圖視窗中顯示工具欄	
	■ 顯示鼠標光標附近的數值	
		OK Capcel

[顯示曲線圖 title]

指定圖上方是否顯示 Title · 打勾則顯示 Title

[Zoom 有効]

指定圖表的 Zoom 機能是否有效,打勾則 Zoom 機能有效

[scroll 有効]

指定圖表的 Scroll 機能是否有效, 打勾則 Scroll 機能有效

Zoom 又或 scroll 的操作方法→「3.5.4 圖的 Zoom、Scroll 機能」。

[曲線圖視窗中顯示工具欄]

指定曲線圖視窗上部是否顯示工具欄。有勾選時,既會顯示工具欄。

[由標接近曲線圖顯示的數值]

游標接近曲線圖系列時,指定靠近滑鼠 curso 位置系列上 data 點的數值是否顯示。有勾選時,既會顯示。

3.13.1.6 光譜,入射角複合 3D 圖表設定

執行光譜,入射角複合圖表的設定。

1 選項	
 > 選項 放動 薄膜厚度 > 光學常數 > 沿動尺與上下鍵 ● 曲線圖 > 光譜・入射角 複合圖表 > 茶鍍控制 ● 電場法度分布 ● 顔色計算 □ 製造錯誤 ● 最適化 其他 語言 	 光譜·入射角 複合圖表設定 原示圖表標題 光譜計算間隔的初期值 波長 5 (nm) 入射角計算間隔的初期值 5 (deg)
	OK Cancel

[光譜計算間隔的初期值]

光譜計算間隔的初期值設定。(nm)

[入射角計算間隔的初期值]

入射角計算間隔的初期值設定。(deg.)

3.13.1.7 蒸鍍 control 設定

設定蒸鍍 control

🦉 選項		
 飲動 ·薄膜厚度 	蒸着controll設定 光學測光方式 1.反面反射測光	
 ・顔色計算 	 入射角(θ) 0 (degrees) Monitiring step 0.001 (nd/λ) MonitorGlass的厚度 1 (mm) 若Glass沒有吸收時就無需輸入 2 顯示曲線圖時,主視窗的控制資料亦會顯示 3 Stop%計算時,也使用相同MonitorGlass前的層的Peak 	
	ОКСа	ancel

詳細請參照「3.6.5 模擬光學式蒸鍍監控」。

3.13.1.8 電場強度設定

設定電場強度。

1 選項		×
 啟動 薄膜厚度 光學常數 冷動尺與上下鍵 ●曲線圖 * 光谱・入射角 複合圖表 * 素鍍控制 * 電場強度分布 ● 顏色計算 型造造錯誤 录通化 其他 語言 	電場強度設定 計算間隔 0.01 ≥ (nd/λ)	
		OK Cancel

[計算 step]

電場強度計算時的膜厚計算 step。數值越小越能精密計算。但過於精細計算時間也相對增長,故通常請選擇 0.01 或 0.001。

3.13.1.9 顏色計算設定

執行色計算的初期設定。

🤨 選項		
 飲動 薄膜厚度 米學常數 済動尺與上下鍵 市舗線圖 電場強度分布 		顔色計算設定 數值數據
	計算設置	
	計算波長範圍和間隔 380-780nm, 間隔 5nm	
	р.	OK Cancel

3.13.1.10 製造誤差設定

執行製造誤差的初期設定。

🦉 選項				
啟動	製造	錯誤設定		
薄膜厚度	啟動設定			
₩光學常數	圖表種類	Plot kind		
滑動尺與上下鍵	米譜曲線圖	Ra		
□曲線圖	- 元 市 山 秋 刑	r cu		
* 尤請・人射用 複合圖表 、 基確抑制	更以规空 Thiskness			
◎ 梁殿控制 ▶ 雷提쓻度公本				
▶ 顏色計算				
□製造錯誤				
⊶ 最適化	分區數量			
其他	1			
語言	審訊次數			
	20			
			OK	Cancel

3.13.1.11 相位和群延遲設定

設置相位與群延遲的參數。

🦉 選項		
 	相位和群延遲設定 Phase limits 「From -180 to 180 ● From 0 to 360 偏振差的計算方法 (相位,群延遲) ● s-p (dFr=Frs-Frp, dFt=Fts-Ftp; GD: dR=Rs-Rp, dT=Ts-Tp) ● p-s (dFr=Frp-Frs, dFt=Ftp-Fts; GD: dR=Rp-Rs, dT=Tp-Ts) 群延遲單位 ● fs ● ps	
	OK Cancel	

[Phase limits]

選擇相位計算範圍為 -180° ~ +180° 或 0° ~ 360°。 [偏振差的計算方法 (相位,群延遲)] 選擇相位差的計算方式為 s 偏振減去 p 偏振,或 p 偏振減去 s 偏振。 [群延遲單位] 選擇群延遲的單位為 fs 或 ps。

3.13.1.12 Stack 設定

10 選項			×
設動 薄膜厚度 ▷光學常數 滑動尺與上下鍵 ■光譜・入射角 複合圖表 →蒸鍍控制 ■電場強度分布	Stack設定 針對含吸收(k)之介質與基板的計算方法 T=Re(Nm)/Re(No) T ² (推薦) 當Stack的基板或媒質(不包含射出媒質)具有 設為0,並使用內部透過率來設定。	<u>、</u> 吸收時,	請將吸收係數(k)
 ● 顔色計算 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>			
		<u>O</u> K	Cancel

[針對含吸收(k)之介質與基板的計算方法]

- 1. $T = Re(N_m)/Re(N_0)|\tau|^2$
- 2. T=Re(N_m/N₀) $|\tau|^2$
- 3. k₀=0

在 Stack 配置中·中間的媒質或基板可能具有吸收係數 (k ≠ 0)。

請指定此情況下的計算方法:

- 1: 推薦。
- 2: 即使在 k≠0 且內部穿透率=0(或厚度=0) 等不合理的配置下,也盡力保持 R+T=1。
- 3: 計算時,入射媒質一律視為 k=0。

3.13.1.13最適化設定

執行最適化的 parameter 設定。

🦉 選項				×
 > 透明 註数動 薄膜厚度 > 光學常數 > 光學常數 ● 出線圖 * 光譜・入射角 複合圖表 > 蒸鍍控制 ● 電場強度分布 ● 動塗置 ● 電場強度分布 ● 動塗道指誤 ● 最適化 其他 語言 	最適化parameter 容許誤差 最大反覆次數 光學膜厚最大值 物理膜厚最大值 Global Search Parar 搜尋次數 鄰近搜尋次數 節機數種子 初期溫度 冷卻速度	最適化設定 0.0001 € 50 € 1 € 500 € meters (Include simula 10 € 10 € 10 € 300 € 10 €	(FWOT (nd/λ)) (nm) ted annealing) 随機數種子變更 (deg.)	×
	●恢復原始值		ОК	Cancel

【最適化 parameter】

[容許誤差]

設定目標值與探索值得容許誤差。既定值為 1.0E-4。

[最大反覆次數]

設定在1次 local search 的反覆次數最大值。在此設定的反覆次數若反覆操作搜尋都無法 達到容許誤差時,則停止搜尋。既定值為50。

[光學膜厚最大值]

膜厚若指定光學膜厚時,設定各層光學膜厚的最大值。各層的最適化 Max 值為 0 時,此值 當最大值使用。設定最適化 Max 值的層為優先。

[物理膜厚最大值]

膜厚若指定物理膜厚時·設定各層物理膜厚的最大值。各層的最適化 Max 值為 0 時·此值 當最大值使用。設定最適化 Max 值的層為優先。

[Goble search parameter (Simulated Annealing Method parameter)]

[搜尋次數]

設定反覆搜尋次數。請設定上記「結果表示數」以上的數值。既定值為10。

[鄰近搜尋次數]

設定在 Simulated Annealing (模擬退火)工程的鄰近探索次數。既定值為 10。

[亂數 seed]

設定為使在 Simulated Annealing 工程發生亂數的 seed。若設定為 0.每次使用不同的 seed。按「seed 變更」鍵.將會設定新的 seed。既定值為 1。設定 0 到 2147483646 的值

[初期溫度]

設定 Simulated Annealing 的初期温度。既定值為 300K。終了溫度 0K。

[冷卻速度]

設定 Simulated Annealing 的冷卻速度(剛好1次的減少溫度)。既定值為10K。

按「恢復既定值」鍵,全部的 parameter 恢復既定值。

3.13.1.14 其它該	定		
🦉 選項			×
 <i> </i>	其他設定 System settings I Fill the gap of Windows10 transparent Enable scaling for high DPI PC Theme Standard	frame	
 ● 顏色計算 → 創位和詳述運 ● 最適化 其他 語言 	□使用鼠標滾輪啟用更改值		
	Debug mode		
		QK	Cancel

[System settings] Fill the gap of Windows10 transparent frame: 填補 Windows10 透明框架的空白。 Enable scaling for high DPI PC: 根據每個顯示器的 Windows 縮放更改字體大小。

[Theme]

通常選擇 Standard。 如果您的電腦速度較慢,選擇 Classic 可能會加快螢幕顯示速度。

[使用鼠標滾輪啟用更改值]

選取後·可以使用滑鼠滾輪來變更薄膜厚度等值。

*不僅是薄膜厚度,幾乎所有 TFV 值都可以使用滑鼠滾輪進行更改。請注意不要誤操作。

[Debug mode] 未使用。請勿勾選此方塊。

3.13.1.15語言	設定		
1 選項			×
 <u>飲動</u> 薄膜厚度 	語言 繁体中文 字體 Yu Gothic UI 大小 11 ⑦ 還可以更改菜單字體	語言設定 * *	
			OK Cancel

設定 TFV 的表示語言。 有日文和英文和繁体中文可供選擇。 您可以在字體字段中設置字體類型和大小。

4 初期導入完畢的基板 data · 膜物質 data

4.1 基板 data

下記的基板 data 為事先預設。

SCHOTT	BAFN6, BK7G18, F2, F2G12, F2HT, F4, F5, FK3, FK5HTi, K5G20, K7, K10, KZFS12, KZFSN4, KZFSN5,
164 種類	LAFN7, LAK9G15, LAKL12, LASF35, LASFN9, LF5, LF5G15, LF5G19, LF5HTi, LITHOSIL-Q,
	LITHOTEC-CAF2, LLF1, LLF1HTi, N-BAF3, N-BAF4, N-BAF10, N-BAF51, N-BAF52, N-BAK1, N-
Jan, 2019	BAK2, N-BAK4, N-BAK4HT, N-BALF4, N-BALF5, N-BASF2, N-BASF64, N-BK7, N-BK7HT, N-
Catalog	BK7HTi, N-BK10, N-F2, N-FK5, N-FK51, N-FK51A, N-FK58, N-K5, N-KF9, N-KZFS2, N-KZFS4, N-
5	KZFS4HT, N-KZFS5, N-KZFS8, N-KZFS11, N-LAF2, N-LAF3, N-LAF7, N-LAF21, N-LAF32, N-
	LAF33, N-LAF34, N-LAF35, N-LAF36, N-LAK7, N-LAK8, N-LAK9, N-LAK10, N-LAK12, N-LAK14,
	N-LAK21, N-LAK22, N-LAK33A, N-LAK33B, N-LAK34, N-LASF9, N-LASF9HT, N-LASF31, N-
	LASF31A, N-LASF40, N-LASF41, N-LASF43, N-LASF44, N-LASF45, N-LASF45HT, N-LASF46, N-
	LASF46A, N-LASF46B, N-PK51, N-PK52A, N-PSK3, N-PSK53, N-PSK53A, N-SF1, N-SF2, N-SF4,
	N-SF5, N-SF6, N-SF6HT, N-SF6HTultra, N-SF8, N-SF10, N-SF11, N-SF14, N-SF15, N-SF19, N-
	SF56, N-SF57, N-SF57HT, N-SF57HTultra, N-SF64, N-SF66, N-SK2, N-SK2HT, N-SK4, N-SK5, N-
	SK10, N-SK11, N-SK14, N-SK15, N-SK16, N-SSK2, N-SSK5, N-SSK8, N-ZK7, N-ZK7A, P-BK7, P-
	LAF37, P-LAK35, P-LASF47, P-LASF50, P-LASF51, P-PK53, P-SF8, P-SF67, P-SF68, P-SF69, P-
	SK57, P-SK57Q1, P-SK58A, P-SK60, SF1, SF2, SF4, SF5, SF6, SF6G05, SF6HT, SF10, SF11, SF14,
	SF15, SF56A, SF57, SF57HHT, SF57HT, SF57HTultra, SF66, SFL6, SFL57, Zerodur
OHARA	BAL15Y, BAL35Y, BSL7Y, BSM51Y, LAH80, L-BAL35, L-BAL35P, L-BAL42, L-BAL42P, L-BAL43, L-
222 種類	BBH1, L-BBH2, L-BSL7, L-LAH53, L-LAH81, L-LAH83, L-LAH84, L-LAH85, L-LAH85V, L-LAH86, L-
	LAH87, L-LAH90, L-LAH91, L-LAH94, L-LAL12, L-LAL13, L-LAL15, L-LAM60, L-LAM69, L-LAM72,
Aug-3, 2020	L-NBH54, L-PHL1, L-PHL2, L-TIH53, L-TIM28, L-TIM28P, PBH55, PBH56, PBL1Y, PBL6Y, PBL25Y,
Catalog	PBL26Y, PBL35Y, PBM2Y, PBM8Y, PBM18Y, S-APL1, S-BAH10, S-BAH11, S-BAH27, S-BAH28, S-
_	BAH32, S-BAL2, S-BAL3, S-BAL11, S-BAL12, S-BAL14, S-BAL22, S-BAL35, S-BAL41, S-BAL42, S-
	BAL50, S-BAM3, S-BAM4, S-BAM12, S-BSL7, S-BSM2, S-BSM4, S-BSM9, S-BSM10, S-BSM14, S-
	BSM15, S-BSM16, S-BSM18, S-BSM21, S-BSM22, S-BSM25, S-BSM28, S-BSM36, S-BSM71, S-
	BSM81, S-BSM93, S-FPL51, S-FPL51Y, S-FPL53, S-FPL55, S-FPM2, S-FPM3, S-FPM4, S-FSL5, S-
	FSL5Y, S-FTL10, S-FTM16, S-LAH51, S-LAH52, S-LAH52Q, S-LAH53, S-LAH53V, S-LAH54, S-
	LAH55, S-LAH55V, S-LAH55VS, S-LAH58, S-LAH59, S-LAH60, S-LAH60MQ, S-LAH60V, S-LAH63,
	S-LAH63Q, S-LAH64, S-LAH65, S-LAH65V, S-LAH65VS, S-LAH66, S-LAH71, S-LAH79, S-LAH88,
	S-LAH89, S-LAH92, S-LAH93, S-LAH95, S-LAH96, S-LAH97, S-LAH98, S-LAH99, S-LAL7, S-
	LAL7Q, S-LAL8, S-LAL9, S-LAL10, S-LAL11, S-LAL12, S-LAL12Q, S-LAL13, S-LAL14, S-LAL18, S-
	LAL19, S-LAL20, S-LAL21, S-LAL52, S-LAL54, S-LAL54Q, S-LAL56, S-LAL58, S-LAL59, S-LAL60, S-
	LAL61, S-LAM2, S-LAM3, S-LAM7, S-LAM51, S-LAM52, S-LAM54, S-LAM55, S-LAM58, S-LAM59,
	S-LAM60, S-LAM61, S-LAM66, S-LAM73, S-NBH5, S-NBH8, S-NBH51, S-NBH52, S-NBH52V, S-
	NBH53, S-NBH53V, S-NBH55, S-NBH56, S-NBH57, S-NBH58, S-NBM51, S-NPH1, S-NPH1W, S-
	NPH2, S-NPH3, S-NPH4, S-NPH5, S-NPH7, S-NPH53, S-NSL2, S-NSL3, S-NSL5, S-NSL36, S-
	PHM51, S-PHM52, S-PHM52Q, S-PHM53, S-TIH1, S-TIH3, S-TIH4, S-TIH6, S-TIH10, S-TIH11, S-
	TIH13, S-TIH14, S-TIH18, S-TIH20, S-TIH23, S-TIH53, S-TIH53W, S-TIH57, S-TIL1, S-TIL2, S-TIL6,
	S-TIL25, S-TIL26, S-TIL27, S-TIM1, S-TIM2, S-TIM3, S-TIM5, S-TIM8, S-TIM22, S-TIM25, S-TIM27,
	S-TIM28, S-TIM35, S-TIM39, S-YGH51, S-YGH52, TIH53
HOYA	ADC1, BAC4, BACD2, BACD4, BACD5, BACD11, BACD14, BACD15, BACD16, BACD18, BACED5,
217 種類	BAF10, BAF11, BAFD7, BAFD8, BAFD15, BSC7, E-ADF10, E-ADF50, E-BACD10, E-BACED20, E-
	BAF8, E-C3, E-CF6, E-F1, E-F2, E-F3, E-F5, E-F8, E-FD1, E-FD1L, E-FD2, E-FD4, E-FD4L, E-FD5, E-
Mar-14,	FD7, E-FD8, E-FD10, E-FD10L, E-FD13, E-FD15, E-FD15L, E-FD80, E-FDS1, E-FDS1-W, E-FDS2, E-
2020	FDS3, E-FEL1, E-FEL2, E-FEL6, E-FL5, E-FL6, E-LAF7, FC5, FCD1, FCD1B, FCD10, FCD10A, FCD100,
Catalog	FCD500, FCD505, FCD515, FCD600, FCD705, FD60, FD60-W, FD110, FD140, FD225, FDS16-W,
	FDS18, FDS18-W, FDS20-W, FDS24, FDS24-W, FDS30, FDS90, FDS90(P), FDS90-SG, FF5, FF8,
	LAC7, LAC8, LAC9, LAC10, LAC12, LAC13, LAC14, LACL60, LAF2, LAF3, LAFL2, LBC3N, M-
	BACD5N, M-BACD12, M-BACD15, MC-BACD5N, MC-BACD12, MC-FCD1-M20, MC-FCD500-20,
	MC-FD80, MC-FDS2, MC-FDS910-50, MC-LAC130, MC-NBF1, MC-NBFD130, MC-NBFD135,

	MC-PCD4-40, MC-PCD51-70, MC-TAF1, MC-TAF31-15, MC-TAF101-100, MC-TAF105, MC-
	TAF401, MC-TAFD51-50, MC-TAFD305, MC-TAFD307, M-FCD1, M-FCD500, M-FD60, M-FD80,
	M-FDS1, M-FDS2, M-FDS910, M-LAC8, M-LAC14, M-LAC130, M-LAF81, M-NBF1, M-NBFD10,
	M-NBFD82, M-NBFD130, MP-BACD5N, MP-BACD12, MP-BACD15, M-PCD4, M-PCD51, M-
	PCD55AR, MP-FCD1-M20, MP-FCD500-20, MP-FD80, MP-FDS1, MP-FDS2, MP-FDS910-50, MP-
	LAC8-30, MP-LAC14-80, MP-LAC130, MP-LAF81, MP-NBF1, MP-NBFD10-20, MP-NBFD130,
	MP-PCD4-40, MP-PCD51-70, MP-PCD55AR, MP-TAC60-90, MP-TAC80-60, MP-TAF31-15, MP-
	TAF101-100 MP-TAF105 MP-TAF401 MP-TAFD51-50 MP-TAFD305 MP-TAFD307 MP-
	TAED405 M-TAC60 M-TAC80 M-TAE1 M-TAE31 M-TAE101 M-TAE105 M-TAE401 M-
	TAED51 M-TAED301 M-TAED305 M-TAED307 M-TAED405 NBE1 NBE2 NBED3 NBED10
	NRED11 NRED12 NRED13 NRED15 NRED15-W NRED25 NRED29 NRED30 NRED32 PCD4
	PCD40 $PCD51$ TAC2 TAC4 TAC6 TAC8 TAE1 TAE2 TAE3 TAE3D TAE4 TAE5 TAED5E
	TAED5G TAED25 TAED20 TAED22 TAED23 TAED25 TAED25 TAED27 TAED27 TAED20 TAED20 TAED20
	TAED45, TAED55, TAED52, TAED52, TAED53, TAED53, TAED57, TAED57A, TAED40, TAED40-W,
CDGM	[A, D+3, TA, D+3, TA, D+3, W, TA, D+3] $[A, D+3, TA, D+3, TA, D+3, W, TA, D+3]$ $[A, D+3, TA, D+3, TA, D+3, W, TA, D+3]$ $[A, D+3, TA, D+3, TA, D+3, W, TA, D+3]$ $[A, D+3, TA, D+3, TA, D+3, W, TA, D+3]$ $[A, D+3, TA, D+3, TA, D+3, W, TA, D+3]$ $[A, D+3, TA, D+3, TA, D+3, W, TA, D+3]$ $[A, D+3, TA, D+3, TA, D+3, W, TA, D+3]$ $[A, W, TA, D+3$
CDGIVI (武初平田)	
(风郁元明) 214 話	K59, D-LAF050, D-LAF50, D-LAF53, D-LAF79, D-LAF82L, D-LAK5, D-LAK6, D-LAK70, D-PK3, D-
314 裡與	QK3L, D-ZF10, D-ZF93, D-ZK2, D-ZK2L, D-ZK3, D-ZK3L, D-ZK/9, D-ZLAF50, D-ZLAF52LA, D-
c	ZLAF61, D-ZLAF67, D-ZLAF81, D-ZLAF85A, D-ZLAF85L, D-ZPK1A, D-ZPK3, F1, F2, F3, F4, F5, F6,
Sep, 2020	F/, F13, H-BaF2, H-BAF3, H-BaF4, H-BAF5, H-BAF6, H-BaF7, H-BAF8, H-BaK1, H-BaK2, H-BaK3,
Catalog	H-BaK4, H-BAK5, H-BaK6, H-BaK7, H-BaK7A, H-BaK7GT, H-BaK8, H-F1, H-F2, H-F4, H-F13, H-
	F51, H-FK61, H-FK61B, H-FK71, H-FK71A, H-FK95N, H-K1, H-K2, H-K3, H-K5, H-K6, H-K7, H-K8,
	H-K90GTi, H-K9L, H-K9L_, H-K9LGT, H-K10, H-K11, H-K12, H-K50, H-K51, H-K51A, H-KF6, H-
	LaF1, H-LAF2, H-LaF3, H-LAF3A, H-LaF3B, H-LaF4, H-LaF4GT, H-LaF6L, H-LAF6LA, H-LAF7, H-
	LaF10L, H-LAF10LA, H-LaF50A, H-LaF50B, H-LaF51, H-LAF52, H-LaF53, H-LaF54, H-LAF55, H-
	LaF62, H-LAFL5, H-LaK1, H-LAK2, H-LAK2A, H-LaK3, H-LaK4L, H-LAK5A, H-LAK6A, H-LaK7, H-
	LaK7A, H-LAK8A, H-LaK8B, H-LAK10, H-LAK11, H-LAK12, H-LaK50, H-LAK50A, H-LaK51, H-
	LaK51A, H-LaK52, H-LaK53, H-LAK53A, H-LaK53B, H-LaK54, H-LAK59, H-LAK59A, H-LAK61, H-
	LAK67, H-QF1, H-QF3, H-QF6, H-QF6A, H-QF8, H-QF14, H-QF50, H-QF50A, H-QF56, H-QK1, H-
	QK3, H-QK3L, H-QK3LGTi, H-TF3L, H-TF5, H-TF8, HWS1, HWS2, HWS3, HWS4, HWS5, HWS6,
	HWS7, HWS27, H-ZBAF1, H-ZBaF3, H-ZBAF4, H-ZBaF5, H-ZBaF16, H-ZBAF20, H-ZBAF21, H-
	ZBaF50, H-ZBaF52, H-ZF1, H-ZF1A, H-ZF2, H-ZF3, H-ZF4, H-ZF4A, H-ZF4AGT, H-ZF5, H-ZF6, H-
	ZF7L, H-ZF7LA, H-ZF7LAGT, H-ZF10, H-ZF11, H-ZF12, H-ZF13, H-ZF13GT, H-ZF39, H-ZF50, H-
	ZF52, H-ZF52A, H-ZF52GT, H-ZF52TT, H-ZF62, H-ZF62GT, H-ZF71, H-ZF71GT, H-ZF72A, H-
	ZF72AGT, H-ZF73, H-ZF73GT, H-ZF88, H-ZF88GT, H-ZK1, H-ZK2, H-ZK3, H-ZK3A, H-ZK4, H-ZK5,
	H-ZK6, H-ZK7, H-ZK7A, H-ZK8, H-ZK9, H-ZK9A, H-ZK9B, H-ZK10, H-ZK10L, H-ZK11, H-ZK14, H-
	ZK20, H-ZK21, H-ZK50, H-ZK50GT, H-ZLaF1, H-ZLaF2A, H-ZLAF3, H-ZLaF4LA, H-ZLaF4LB, H-
	ZLaF50A, H-ZLaF50B, H-ZLAF50D, H-ZLaF50E, H-ZLaF51, H-ZLaF52, H-ZLaF52A, H-ZLaF53, H-
	ZLAF53A, H-ZLAF53B, H-ZLaF53BGT, H-ZLaF55, H-ZLAF55A, H-ZLaF55C, H-ZLaF55D, H-ZLaF56,
	H-ZLAF56A, H-ZLaF56B, H-ZLAF66, H-ZLaF66GT, H-ZLAF68, H-ZLaF68B, H-ZLaF68C, H-
	71 aE68N, H-71 AE69, H-71 aE69A, H-71 aE71, H-71 aE71AGT, H-71 AE75, H-71 aE75A, H-71 aE75B,
	H-71 AE76 H-71 aE76A H-71 AE78 H-71 AE78A H-71 aE78B H-71 aE851 H-71 AE891 H-71 AE90
	H-7LaE92 H-7PK1 H-7PK1A H-7PK2 H-7PK2A H-7PK3 H-7PK5 H-7PK7 K4A K50 OF1 OF3
	$\bigcirc F_{2} = F_$
	7E1 7E2 7E3 7E4 7E5 7E6 7E7 7E71 7E71 GT 7E8 7E10 7E11 7E12 7E13 7E50 7E51 7E52
	E RAE2 = RAE4 = RAE2 = RAE10 = RAE11 = RAE12 = RAV1 = RAV2 = RAV4 = RA
111KAN 202	$L^{-}DAF3$, $L^{-}DAF4$, $L^{-}DAF6$, $L^{-}DAF10$, $L^{-}DAF11$, $L^{-}DAF12$, $L^{-}DAF1$, $L^{-}DAF4$,
302 作主演	
Apr 1 2020	
Apr-1, 2020	
Catalog	
	LAK18, E-LAKH1, E-LASFU1, E-LASFU2, E-LASFU3, E-LASFU4, E-LASF05, E-LASF08, E-LASF09, E-
	LASF010, E-LASF013, E-LASF014, E-LASF015, E-LASF016, E-LASF017, E-LASF021, E-LASFH2, E-
	LASFH6, E-LASFH9, E-LASFH13, E-LASFH15, E-LASFH17, E-LASKH2, E-LF5, E-LF6, E-LF7, E-LLF1,
	E-LLF2, E-LLF6, E-PKH1, E-PSK02, E-PSK03, E-PSKH1, E-SF1, E-SF2, E-SF03, E-SF4, E-SF5, E-SF6,
	E-SF7, E-SF8, E-SF10, E-SF11, E-SF13, E-SF14, E-SF15, E-SFH1, E-SFH2, E-SFS3, E-SK2, E-SK4, E-

	SK5, E-SK10, E-SK11, E-SK12, E-SK14, E-SK15, E-SK16, E-SK18, E-SSFH1, E-SSK1, E-SSK5, E-SSK8,
	J-BAF3, J-BAF4, J-BAF8, J-BAF10, J-BAF11, J-BAF12, J-BAK1, J-BAK2, J-BAK4, J-BALF4, J-BASF2, J-
	BASF6, J-BASF7, J-BASF8, J-BK7, J-BK7A, J-F1, J-F2, J-F3, J-F5, J-F8, J-F16, J-FK01, J-FK01A, J-FK5,
	J-FKH1, J-FKH2, J-K3, J-K5, J-KF6, J-KZFH1, J-KZFH4, J-KZFH6, J-KZFH7, J-KZFH9, J-LAF01, J-
	LAF02, J-LAF2, J-LAF3, J-LAF04, J-LAF05, J-LAF7, J-LAF09, J-LAF010, J-LAF016, J-LAF016HS, J-
	LAFH3, J-LAFH3HS, J-LAK01, J-LAK02, J-LAK04, J-LAK06, J-LAK7, J-LAK7R, J-LAK8, J-LAK09, J-
	LAK9, J-LAK10, J-LAK011, J-LAK12, J-LAK13, J-LAK14, J-LAK18, J-LASF01, J-LASF02, J-LASF03, J-
	LASF05, J-LASF05HS, J-LASF08, J-LASF08A, J-LASF09, J-LASF09A, J-LASF010, J-LASF013, J-
	LASF014, J-LASF015, J-LASF015HS, J-LASF016, J-LASF017, J-LASF021, J-LASF021HS, J-LASFH2,
	J-LASFH6, J-LASFH9, J-LASFH9A, J-LASFH13, J-LASFH13HS, J-LASFH15, J-LASFH15HS, J-
	LASFH16, J-LASFH17, J-LASFH17HS, J-LASFH21, J-LASFH22, J-LASFH23, J-LASFH24, J-
	LASFH24HS, J-LASKH2, J-LF5, J-LF6, J-LF7, J-LLF1, J-LLF2, J-LLF6, J-PKH1, J-PSK02, J-PSK03, J-
	PSKH1, J-PSKH4, J-PSKH8, J-SF1, J-SF2, J-SF03, J-SF03HS, J-SF4, J-SF5, J-SF6, J-SF6HS, J-SF7, J-
	SF8, J-SF10, J-SF11, J-SF13, J-SF14, J-SF15, J-SFH1, J-SFH1HS, J-SFH2, J-SFH4, J-SFH5, J-SFS3, J-
	SK2, J-SK4, J-SK5, J-SK10, J-SK11, J-SK12, J-SK14, J-SK15, J-SK16, J-SK18, J-SSK1, J-SSK5, J-SSK8,
	P-FK01S, P-FKH2S, P-LAF010S, P-LAK13S, P-LAK52S, P-LASF03S, P-LASFH11S, P-LASFH12S, P-
	LASFH18S, P-LASFH19S, P-PSKH1S, P-PSKH2S, P-SF6S, P-SK5S, P-SK12S, Q-FK01AS, Q-FK01S,
	Q-FKH1S, Q-FKH2S, Q-LAF010S, Q-LAFPH1S, Q-LAK13S, Q-LAK52S, Q-LAK53S, Q-LASF03S, Q-
	LASFH11S, Q-LASFH12S, Q-LASFH58S, Q-LASFH59S, Q-LASFPH2S, Q-LASFPH3S, Q-PSKH1S, Q-
	PSKH2S, Q-PSKH4S, Q-PSKH52S, Q-SF6S, Q-SK12S, Q-SK15S, Q-SK52S, Q-SK55S
SUMITA	K-BaF8, K-BaF9, K-BaFn1, K-BaFn3, K-BaSF4, K-BaSF5, K-BaSF12, K-BK7, K-BOC30, K-BPG2, K-
143 種類	CaFK95, K-CD45, K-CD120, K-CD300, K-CSK120, K-FIR98UV, K-FIR100UV, K-FK5, K-GFK68, K-
	GFK70, K-GIR79, K-GIR140, K-LaF2, K-LaF3, K-LaFK50, K-LaFK50T, K-LaFK55, K-LaFK58, K-
Jul-15, 2020	LaFK60, K-LaFK63, K-LaFK65, K-LaFn1, K-LaFn2, K-LaFn3, K-LaFn5, K-LaFn9, K-LaFn11, K-LaK6,
Catalog	K-LaK7, K-LaK8, K-LaK9, K-LaK10, K-LaK11, K-LaK12, K-LaK13, K-LaK14, K-LaK18, K-LaKn2, K-
	LaKn7, K-LaKn12, K-LaKn14, K-LaSFn1, K-LaSFn2, K-LaSFn3, K-LaSFn4, K-LaSFn6, K-LaSFn7, K-
	LaSFn8, K-LaSFn8W, K-LaSFn9, K-LaSFn10, K-LaSFn14, K-LaSFn16, K-LaSFn17, K-LaSFn21, K-
	LaSFn22, K-LaSFn23, K-LaSKn1, K-LCV93, K-LCV161, K-PBK40, K-PBK50, K-PBK60, K-PFK80, K-
	PFK85, K-PFK90, K-PG325, K-PG375, K-PG395, K-PMK30, K-PSFn1, K-PSFn2, K-PSFn3, K-PSFn4,
	K-PSFn5, K-PSFn166, K-PSFn173, K-PSFn185, K-PSFn190, K-PSFn202, K-PSFn203, K-PSFn214, K-
	PSFn214P, K-PSK11, K-PSK100, K-PSK200, K-PSK300, K-PSK400, K-PSK500, K-PSKn2, K-SFLD1,
	K-SFLD2, K-SFLD4, K-SFLD5, K-SFLD6, K-SFLD8, K-SFLD8W, K-SFLD10, K-SFLD11, K-SFLD14, K-
	SFLD66, K-SFLDn3, K-SFLDn3W, K-SK4, K-SK5, K-SK7, K-SK14, K-SK15, K-SK16, K-SK16RH, K-
	SK18, K-SK18RH, K-SKF6, K-SKLD100, K-SKLD120, K-SKLD200, K-SSK1, K-SSK3, K-SSK4, K-SSK9,
	K-VC78, K-VC79, K-VC80, K-VC82, K-VC89, K-VC90, K-VC91, K-VC99, K-VC100, K-VC179, K-
	VC181, K-VC185, K-ZnSF8
其他	Al2O3(Subst), ALON(Subst), APEL, CaF2, GaAs(Subst), Ge(Subst), PCHMA, PEI, PMMA, PMMA1,
19 種類	Polycarbonate, Polystyrene, Quartz, SAN, Si(Subst), ZEONEX-330R, ZEONEX-480R, ZEONEX-
	E48R, ZnSe(Subst)

4.2 膜物質 data

下記膜物質 data 為事先預設。

Ag, Al2O3, AL, Au, Cr, Cu, H2, H4, LaF3, M3, M3-RT, MgF2, Nb2O5, Nb2O5-RT, OH5, OH5-RT, OS50, OS50-RT, SiO2, Ta2O5, Ta2O5-RT, Ti, TiO2, Zn, ZnS, ZrO2, Cytop

Al2O3(KTM), HfO2(KTM), LaF3(KTM), Ti3O5(KTM), ZrO2(KTM), ZRT2(KTM)

※ KTM: 京都薄膜材料研究所(Kyoto Thin-Film Materials institute)

使用 Maker 公佈的目錄資料又或文獻資料。

5 參考手冊

5.1.1 功能表

說明功能表的各項機能

檔案

┣開新檔案(N)	:開新檔案。
➢開啓舊檔(O)	:從舊檔讀取膜資料。
🗟重新整理(R)	:重新整理。回復到儲存時的狀態,已編輯的內容會流失。
最近使用過的檔案	:表示最近使用過的 20 個膜 data 檔案。 選擇[Clear]就會把履歴消除不會表示在 List。
₩儲存檔案(S)	膜 data 儲存複寫。
₿另存新檔(A)	:存檔。
◎●開啟 Project	:從檔案讀取 Project。
最近使用過的 Project	:表示最近使用過的 20 個 Project。 選擇[Clear]就會把履歴消除不會表示在 List。
■儲存 Project	:Project 儲存複寫。
₿另存 Project	:另外開新檔案保存 Project。
關閉 Project	:關閉現在的 Project 内容画面回到初期状態。
導入	:從 Essential Macleod 和 Zemax OpticStudio 匯入資料。
導出	:為 Zemax OpticStudio 建立 Coating 檔案。
結束(X)	:結束 TFV。

編輯

將選定的單元格複製到剪貼板	:把選定的欄位内容複製到剪貼板。
一 從剪貼板粘貼到單元格	:把剪貼板的内容粘貼到選定的欄位。
■層複製至剪貼簿(C)	:選擇層複製至剪貼欄。
▋由剪貼簿複製貼至層(∀)	:複製剪貼簿的層貼至選擇的位置。

━插入膜層(I)	:插入膜層。
➡刪除膜層(D)	:刪除膜層。
☞插入週期膜層(P)	:插入週期膜層。
☞刪除週期膜層(L)	:刪除週期膜層。
展開週期膜層	:展開週期膜層。
₩轉換物理膜厚(全層) (T)	:全層的膜厚轉換為物理膜厚。
₩轉換光學膜厚(全層)(O)	:全層的膜厚轉換為光學膜厚。
■將膜資料複製至其他 Sheet (F)	:不變更物理膜厚,指變更中心波長。
₩膜厚不變 · 變更中心波長(W)	:不變更物理膜厚·指變更中心波長。
◈清晰膜資料(Z)	:清除膜資料。
іа複製膜資料(E)	:複製膜資料 。 (Tab 鍵隔開)
	複製的膜資料可以貼到表計算軟體或是其它程式。
↓ ↓ ↓ ↓ ↓ ↓ 反轉層(R)	: 層上下交換。
✓編輯註解(K)	:膜 data 的註解編輯。

-	-	-
汞	7	$\overline{\}$

■光譜曲線圖(W)	:表示光譜曲線圖(光譜 對 反射率・透射率・吸收・光密度・相移 變化)
☑入射角曲線圖(A)	:表示入射角曲線圖(入射角 對 反射率・透射率・吸收・光密度・ 相移變化)
<mark>3D</mark> 光譜・入射角 3D 圖 表	:顯示光譜·入射角的 3D 圖表。
──●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●	:表示色散曲線圖(光譜 對 折射率・吸收係數)
₩ > > > > > > > > > 	:表示蒸鍍控制曲線圖(成膜時的光學 monitor 的光強變化圖)
🌆 電場強度曲線圖(I)	:表示電場強度曲線圖
₩顏色計算(C)	: 表示 xy 色度圖、a*b*色度圖、或各表色系數值。 通常以 380nm~780nm 之間,間隔 5nm 來計算。
₩製造誤差曲線圖(M)	:表示製造誤差曲線圖(光譜或入射角對反射率·透射率·吸收· 相移變化)。 各層的膜厚·折射率·吸收係數等·與設計值有誤差時·用於光學 特性變化的解析。
群延遲 - 光譜	:顯示群延遲的頻譜圖。
群延遲 - 入射角	:顯示群延遲與入射角的關係圖。
♣Stack(B)	: 為了當平行平面基板在複数積層時的多重反射合計的特性計算時會表示 Stack 視窗。
工具	
▲」薄膜計算用工具(M)	:開啟薄膜計算用工具。

	算、三層等效膜計算。
	從反射特性的高峰計算折射率、二面膜厚的合計反射率計
■ 薄膜計算用工具(M)	:開啟薄膜計算用工具。

⁰ <mark>ॡ</mark> 設計的最適化	:執行設計的最適化。
^N k基板及單層膜的 nk 分析(N)	:根據反射率和透射率的測量值分析基板及單層膜的 n 和 k。
III 色散資料的編輯(D)	:色散資料的作成和編輯。
■不均匀 data 編集(I)	:不均質 data 做成、編輯所使用。
■記憶此視窗位置(₩)	:記憶窗位置、size、次回起將直接顯示位置與 size。
×消除以記憶的視窗位置(X)	: 消除已記憶的視窗位置與 size。
♣設定(O)	:初期設定和各種動作設定。
表示說明	
>●使用手冊(pdf) :表示	說明 pdf 文件。
∽ TFV 網站(₩) :開啟	劉覽器 · 打開 TFV 網頁 ·
♥表示版本情報等(A) :表示/	版本情報等。

5.1.2 工具列

顯示功能表中經常使用項目的工具列。方便操作這些使用頻率高的項目。

- 蔖 開啟舊檔
- 🗟 重新整理
- 🔡 另存新檔
- 🔍 光譜曲線圖
- ✓ 入射角曲線圖
- 3D 光譜 · 入射角 3D 圖表
- 🔚 色散曲線圖
- 坏 蒸鍍控制曲線圖
- 📠 電場強度圖
- Ы 顏色計算
- 딣 製造誤差解析
- ^{GD}▼ GD
- +Stack
- □k 基板及單層膜的 nk 分析
- Ь 設定

5.1.3 計算範圍、計算間隔設定

設定計算的光譜範圍、光譜間隔、入射角範圍、入射角間隔 於此區塊設定的光譜範圍和入射角範圍,也會套用在光譜和入射角曲線圖的 X 軸。

● 光譜類型和單位(上段)

選擇頻譜圖、3D 圖和製造誤差圖的頻譜類型和單 位。

支援的頻譜類型如右表所示。

光譜類型	單位
波長	Å, nm, μm, mm
頻率	PHz, THz, GHz
波數	cm⁻¹, μm⁻¹, 2π/cm
角頻率	rad/fs
能量	eV, keV
g-Number	

● 光譜計算範圍(中段)

設定光譜圖、3D 圖和製造誤差圖的光譜計算範圍。

開始 : 計算開始光譜

終了 : 計算結束光譜

間隔 : 計算光譜間隔

上圖例的設定為波長 380nm ~ 780nm 之間每間隔 1nm 計算

● 入射角計算範圍(下段)

設定入射角圖和 3D 圖的入射角計算範圍。

開始 : 計算開始角度

終了 : 計算結束角度

間隔 : 計算角度間隔

入射角度計算光譜(nm)及電場強度計算光譜 : 計算入射角特性及電場強度的光譜

上圖例的設定為:入射角 0°~60°之間,每間隔 1°、對 500nm 的波長來計算。

入射角度計算光譜的設定 · 亦為電場強度計算光譜的設定 · 因此 · 電場強度計算也以 500nm 的波長來計算 ·

變更設定後請按「適用鍵」

● R,T,A 單位

選擇光譜圖、入射角圖、3D 圖和製造誤差圖的反射率 (R)、透射率 (T) 和吸收率 (A) 的單位。

支援的單位為 0-1、% 和 dB。

5.1.4 膜資料

設定:設計的中心波長、入射角、基板,和入射介質的種類、各層膜厚、使用物質等。 備有五張工作表,可一次編輯五個膜資料,並同時顯示於圖上。

Center	:設計的中心波長(nm)
Angle	:光線的入射角度(deg.)
Substrate	: 基板種類 從清單選擇色散資料,或直接輸入折射率值。
No.	: 層的號碼 No.1 是與基板接觸的層
Thickness	:光學膜厚或物理膜厚
Material	: 膜物質種類 從清單選擇色散資料,或直接輸入折射率值。
dn	:折射率補正值 針對 Material 設定的膜物質折射率值,進行加算此欄的設定值。
dk	:吸收係數補正值 針對 Material 設定的膜物質吸收係數·進行加算此欄的設定值。
不均匀	:不均匀的種類 Dropdown list 中選擇不均匀。
Medium	:入射介質 從清單選擇色散資料,或直接輸入折射率值。

周期層

Shee	et1 Shee	t2 Sheet	t3 Sheet4	Sheet5	Sheet6	Sheet7 S <	>	
Cent	er 5	00 🔶 nm	n, Angle	0 🔺	deg			
Sub	strate N-I	BK7(SCH	OTT)	~			_	调扣
	Thick	iness		n and k	profile			
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均匀	-	
1	.2500	75.56	Al2O3	.0000	.0000			
2	.5000	121.97	ZrO2	0000	0000		_	
P1			Period	2	1.00		1	
3	.2500	75.56	Al2O3	.0000	.0000			油田屋
4	.2500	60.98	ZrO2	.0000	.0000			迥别眉
P1			End				J	
5	.2500	90.27	MgF2	.0000	.0000			
Med	lium 1		```	~				

從 Period 到 End(灰色兩行所夾部份)為一個週期。Period 右邊的數字表示週期。 週期的右側數字顯示週期層內的膜厚倍率。Thickness的值與此次被率相乘。 也請參照「3.4.13 周期層設定」。 此例中, 膜構成如下:

計算種類的選擇

基板/Al₂O₃/ZrO₂/Al₂O₃/ZrO₂/Al₂O₃/ZrO₂/MgF₂/Air

按取消選取鈕取消所有選擇。

主視窗的下面有許多計算種類的選項,勾取的項目會表示圖和數值。

🗹 Ra 🛛 🛛	Rs 🗌 Rp	o 🗌 Ta	🗌 Ts	🗌 Тр	□反面
🗆 Aa 🛛 /	As 🗌 Ap	o 🗌 ODa		s 🗌 ODp	
🗆 Frs 🗌 I	Frp 🗌 dF	r 🗌 Fts	🗌 Ftp	🗌 dFt	取消選取
Ra	•	反射率	(平均)	
Rs	•	反射率	S偏	振光 (TE	.)
Rp	:	反射率	P偏	振光(TN	Л)
Та	•	透射率	(平均)	
Ts	:	透射率	S 偏	振光 (TE	.)
Тр	•	透射率	P偏	振光 (T N	٨)
Aa	•	吸收率	(平均)	
As	•	吸收率	S偏	振光 (TE	2)
Ар	•	吸收率	P偏	振光 (T N	٨)
ODa	•	光密度	(平均)	
ODs	•	光密度	S 偏	振光 (T E	:)
ODp) :	光密度	P偏	振光 (T N	٨)
Frs	•	反射相	移變('L S 偏打	辰光(TE)
Frp	•	反射相	移變(ЪР偏	辰光(TM)
dFr	•	反射相	移差		
Fts	•	透過相	移変(とS 偏打	辰光(TE)
Ftp	:	透過相	移変(ЪР偏	辰光(TM)
dFt	:	透過相	移差		
反面	•	由反面	側的	入射光版	反面計算

TFV 使用手册

5.1.5 膜資料區域的滑鼠右鍵目錄

🔰 TFV							\times	
檔案(E)	編輯(<u>E</u>) 表	長示(<u>V</u>) Shee	et選擇(<u>S</u>) 工具(]	[) 表示說明(<u>H</u>)			
2 🖻	🗄 😡 🛂 3	ם ≻∼ ∿ ∧ โพ	. 🏷 📣 🕂 O _{Pt}	n _k 🎍				
波長		🕑 nm	~		R	,T,A單位	>	
3	80 -	780 step	1 _{nm}	Detail	適用	%		
0 -	60 ste	p 1 <mark>de</mark>	eg, Ref=	500 nm	重設		<	
Sheet1	Sheet2 S	heet3 She	et4 Sheet5 Sh	eet6 Sheet	7 Sheet8	Sheet9	She	
Center	50	00 🗧 nm, /	Angle	0 🗧 deg				
Substr	ate N-BK7	(SCHOTT)			v			
	Thick	ness		n and k p	rofile			1
No.	<u>nd/λ</u>	nm	Material	dn	dk	不均气)	ŕ
1	0.2500	75.56	Al2O3	0.0000	0.0000			Ī
2	0.5000	121.97	ZrO2	0.0000	0.0000			
3	0.2500	90.27	MgF2	0.0000	0.0000			
Mediu	m 1				~			
🗹 Ra	Rs C	Rp 🗆 Ta	a 🗆 Ts 👘	Tp 🗌	反面			
🗆 Aa	As C	Ap 🗆 O	Da 🗌 ODs 🗌	ODp				
🗆 Frs	Frp	dFr 🗆 Ft	s 🗆 Ftp 🗌	dFt 取	消選取			

在工作表切換標籤和欄內按右鍵. 會跳出選項目錄

工作表切換標韱的右鍵目錄

在工作表標韱上按右鍵會出現如下選項:

✔書將膜資料複製至其他Sheet(F) ₩ 膜厚不變變更中心波長(W)				
◇ 清晰膜資料(Z) ो 複製膜資料(E)				
↓↑ 反轉層(R)				
🧶 編輯註解(K)				
●將膜資料複製至 其他 Sheet (F)	: 膜資料	: 膜資料複製至 其他 sheet。		
₩膜厚不變變更中 心波長(₩)	: 不變更	不變更物理膜厚,只變更中心波長。		
◇清晰膜資料(Z)	: 清除工 並非冊 請按開	清除工作表上的膜資料,工作表會變為不可編輯狀態, 並非刪除已存檔的膜資料。若要再度恢復可編輯狀態, 請按開啟新檔□,或讀取舊檔聲即可。		
■複製膜資料(E)	: 膜資料 可貼到	膜資料會以純文字(Tab 鍵隔開)形式複製到剪貼簿。 可貼到表計算軟體等。		
↓Î反轉層(R)	: 層上下	· 交换。		
✔編輯註解(K)…	: 編輯膜	資料的註解。		

膜資料欄的右鍵目錄 在膜資料欄按右鍵會出現如下選項:

Cell					
Ð	將選定的單元格複製到剪貼板				
ß	從剪貼板粘貼到單元格				
層					
Ð.	複製此膜層(<u>C</u>)				
ß	貼付至此膜層(⊻)				
30	插入膜層())				
•	刪除膜層(<u>D</u>)				
•=	插入週期膜層(P)				
<u> </u>	刪除運期膜層(<u>L)</u>				
	展開週期膜層				
Sheet					
	將膜資料複製至其他Sheet(F)				
500 4600	膜厚不變,變更中心波長(<u>W</u>)				
0	 唐晰膜資料(Z)				
Ð	複製膜資料(<u>E</u>)				
11	反轉層(<u>R</u>)				
I.	編輯註解(<u>K</u>)				

■將選定的單元格複製到剪貼 板	:	把選定的欄位内容複製到剪貼板。
门 從剪貼板粘貼到單元格	:	把剪貼板的内容粘貼到選定的欄位。
■複製此膜層(C)	•	將按右鍵的膜層複製至剪貼簿。
■貼付至此膜層(V)	:	將剪貼簿的內容貼付至按右鍵的膜層。
<mark>∃</mark> ■插入膜層(I)	:	於按右鍵的膜層前插入1層新膜層。
➡刪除膜層(D)	:	· 消除按右鍵的膜層。
☞插入週期膜層(P)	:	於按右鍵的膜層前插入週期層。
		於出現的對話視窗設定週期層層數和週期。
☞刪除週期膜層(L)	:	消除週期層。
		進行時需於週期層灰色的部份按右鍵才有效。
展開週期膜層	:	展開週期膜層。
➡➡➡➡➡➡₩₩₩₩₩₩₩₩₩₩	:	將按右鍵的膜層的膜厚轉換為物理膜厚。
⇄將此層轉換為光學膜厚厚(Y)	:	將按右鍵的膜層的膜厚轉換為光學膜厚。
⇄轉換為物理膜厚(全層)(T)	:	全層的膜轉換為物理膜厚。
⇄轉換為光學膜厚(全層) (O)	:	全層的膜厚轉為光學膜厚。
5.2 曲線圖視窗

5.2.1 曲線圖的滑鼠右鍵目錄

在曲線圖上按滑鼠右鍵會出現如下選項:

	格式設定(<u>F</u>)
V _{ser}	於圖上追加使用者定義線(A)
0	由曲線圖刪除使用者定義線(<u>D</u>)
2	由分光光度計測定File追加至曲線圖(M)
۲	由曲線圖刪除分光光度計資料(E)
123	数值表示計算結果(<u>N</u>)
b	計算結果的數值複製到剪貼簿(C)
	複製圖到剪貼簿(P)
8	曲線圖以圖片檔形式存檔(S)
	返回曲線圖的Zoom scroll (<u>R</u>)
	記憶此視窗位置(<u>W</u>)
\times	消除以記憶的視窗位置(X)
88	Arrange •
	Exchange place

፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟	:	設定圖表的軸和系列色。
₩於圖上追加使用者定義	:	於圖上追加使用者定義線。
線(A)		可追加規格線、或是分光光度計的測定 data 等於圖上。
◆由曲線圖刪除使用者定	:	由曲線圖刪除使用者定義線所顯示的畫面。
義線(D)		
🚵 由分光光度計測定 File	:	讀寫分光光度計 File 裡的追加至曲線圖的功能。
追加至曲線圖(M)		
◆由曲線圖刪除分光光度	:	由曲線圖刪除分光光度計資料所顯示的畫面。
計資料(X)		
¹ 23數值表示計算結果(N)	:	數值表示計算結果(曲線圖的 Plot)。
計算結果的數值複製到	:	計算結果的數值複製到剪貼簿(Tab 鍵隔開)。
剪貼簿(C)		數值以純文字(Tab 鍵隔開)形式複製到剪貼簿。
		可貼於表計算等軟體。
複製圖到剪貼簿(P)	:	複製圖到剪貼簿。
		可將圖貼於其他軟體。
曲線圖以圖片檔形式存檔	:	曲線圖以圖片檔形式存檔。
(S)		
返回曲線圖的 Zoom scroll	:	將 Zoom scroll 返回原狀。
(R)		
■記憶此視窗位置(W)	:	記憶此視窗位置與 size · 次回起直接顯示所記憶的位置與
		size •
× 消除以記憶的視窗位置	:	消除已記憶的視窗位置與 size。已記憶的視窗位置或 size
(X)		將刪除。
整列	:	選擇光譜曲線圖與入射角曲線圖的 R,T,A,Phase 別整列方
		法。
場所的更換	:	分割表示曲線圖時・指定反射率・透過率・吸収率・相位
		變化個別表示在何位置。

錯誤訊息的內容	原因	處理方法
Hard key not found.	Hard key 未連上電腦。	請將 Hard key 插上電腦。
	電腦的連接處故障。	嚐試將 Hard key 插在別的
		port。並確認 Hard key 的
	起動 IFV 軟體,但電脑為	Stand-by 实体止状態曾适成
	Stand-by 现怀止欣慰。	│ 和 HdfU Key 的通信中画Ⅲ 段 │ 生 arror。此時失將 Hard
		上 ellor 。 此時九時 flatu
		key 的通信再連接之後 error
		就會解除.
	使用錯誤的 Hard key。	請將 TFV 專用的 Hard key
		插上電腦。
	電腦運作不正常。	重新啟動電腦,或嚐試安裝 於別台電腦。
	Hard key 用的驅動程式	Sentinel System Driver $-\Box$
	(Sentinel System Driver)	解除安裝後需再插入安裝光
	安裝矢敗。 	
		任 <u>萌尤扱际 Hard Key</u> 。
	Hard key 故障。	請將 Hard key 送修。
Error loading program.	TFV 的程式破損。	請重新安裝 TFV。
Error loading import library.	TFV 動作執行上所需要的 檔案不存在或破損。	請重新安裝 TFV。
Error importing library function.	TFV 動作執行上所需要的 檔案破損。	請重新安裝 TFV。

最新資訊請參閱 TFV 主頁。 TFV 首頁:<u>https://thinfilmview.com/</u>